| Step | Hyp | Ref
| Expression |
| 1 | | elfzonn0 12512 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℕ0) |
| 2 | 1 | nn0red 11352 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℝ) |
| 3 | | nndivre 11056 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
| 4 | 2, 3 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ) |
| 5 | | elfzole1 12478 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑘) → 0 ≤ 𝑖) |
| 6 | 2, 5 | jca 554 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (0..^𝑘) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖)) |
| 7 | | nnrp 11842 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
| 8 | 7 | rpregt0d 11878 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
| 9 | | divge0 10892 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ ℝ ∧ 0 ≤
𝑖) ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → 0 ≤ (𝑖 / 𝑘)) |
| 10 | 6, 8, 9 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑖 / 𝑘)) |
| 11 | | elfzo0le 12511 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑘) → 𝑖 ≤ 𝑘) |
| 12 | 11 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ≤ 𝑘) |
| 13 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ∈ ℝ) |
| 14 | | 1red 10055 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈
ℝ) |
| 15 | 7 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+) |
| 16 | 13, 14, 15 | ledivmuld 11925 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ (𝑘 · 1))) |
| 17 | | nncn 11028 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
| 18 | 17 | mulid1d 10057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘) |
| 19 | 18 | breq2d 4665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖 ≤ 𝑘)) |
| 21 | 16, 20 | bitrd 268 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ 𝑘)) |
| 22 | 12, 21 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ≤ 1) |
| 23 | | 0re 10040 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 24 | | 1re 10039 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 25 | 23, 24 | elicc2i 12239 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 / 𝑘) ∈ (0[,]1) ↔ ((𝑖 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑖 / 𝑘) ∧ (𝑖 / 𝑘) ≤ 1)) |
| 26 | 4, 10, 22, 25 | syl3anbrc 1246 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ (0[,]1)) |
| 27 | 26 | ancoms 469 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0..^𝑘)) → (𝑖 / 𝑘) ∈ (0[,]1)) |
| 28 | | elsni 4194 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ {𝑘} → 𝑗 = 𝑘) |
| 29 | 28 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) = (𝑖 / 𝑘)) |
| 30 | 29 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑘} → ((𝑖 / 𝑗) ∈ (0[,]1) ↔ (𝑖 / 𝑘) ∈ (0[,]1))) |
| 31 | 27, 30 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0..^𝑘)) → (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) ∈ (0[,]1))) |
| 32 | 31 | impr 649 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ (𝑖 ∈ (0..^𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
| 33 | 32 | adantll 750 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑖 ∈ (0..^𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1)) |
| 34 | | poimirlem30.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ℕ⟶((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 35 | 34 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 36 | | xp1st 7198 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑘) ∈ ((ℕ0
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(𝐺‘𝑘)) ∈ (ℕ0
↑𝑚 (1...𝑁))) |
| 37 | | elmapfn 7880 |
. . . . . . . . . . 11
⊢
((1st ‘(𝐺‘𝑘)) ∈ (ℕ0
↑𝑚 (1...𝑁)) → (1st ‘(𝐺‘𝑘)) Fn (1...𝑁)) |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐺‘𝑘)) Fn (1...𝑁)) |
| 39 | | poimirlem30.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ran (1st
‘(𝐺‘𝑘)) ⊆ (0..^𝑘)) |
| 40 | | df-f 5892 |
. . . . . . . . . 10
⊢
((1st ‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘) ↔ ((1st ‘(𝐺‘𝑘)) Fn (1...𝑁) ∧ ran (1st ‘(𝐺‘𝑘)) ⊆ (0..^𝑘))) |
| 41 | 38, 39, 40 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1st
‘(𝐺‘𝑘)):(1...𝑁)⟶(0..^𝑘)) |
| 42 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑘 ∈ V |
| 43 | 42 | fconst 6091 |
. . . . . . . . . 10
⊢
((1...𝑁) ×
{𝑘}):(1...𝑁)⟶{𝑘} |
| 44 | 43 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}) |
| 45 | | fzfid 12772 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑁) ∈ Fin) |
| 46 | | inidm 3822 |
. . . . . . . . 9
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 47 | 33, 41, 44, 45, 45, 46 | off 6912 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
| 48 | | poimir.i |
. . . . . . . . . 10
⊢ 𝐼 = ((0[,]1)
↑𝑚 (1...𝑁)) |
| 49 | 48 | eleq2i 2693 |
. . . . . . . . 9
⊢
(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ ((0[,]1)
↑𝑚 (1...𝑁))) |
| 50 | | ovex 6678 |
. . . . . . . . . 10
⊢ (0[,]1)
∈ V |
| 51 | | ovex 6678 |
. . . . . . . . . 10
⊢
(1...𝑁) ∈
V |
| 52 | 50, 51 | elmap 7886 |
. . . . . . . . 9
⊢
(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ ((0[,]1)
↑𝑚 (1...𝑁)) ↔ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
| 53 | 49, 52 | bitri 264 |
. . . . . . . 8
⊢
(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1)) |
| 54 | 47, 53 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) ∈ 𝐼) |
| 55 | | eqid 2622 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) = (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 56 | 54, 55 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))):ℕ⟶𝐼) |
| 57 | | frn 6053 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))):ℕ⟶𝐼 → ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ⊆ 𝐼) |
| 58 | 56, 57 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ⊆ 𝐼) |
| 59 | | ominf 8172 |
. . . . . . 7
⊢ ¬
ω ∈ Fin |
| 60 | | nnenom 12779 |
. . . . . . . . 9
⊢ ℕ
≈ ω |
| 61 | | enfi 8176 |
. . . . . . . . 9
⊢ (ℕ
≈ ω → (ℕ ∈ Fin ↔ ω ∈
Fin)) |
| 62 | 60, 61 | ax-mp 5 |
. . . . . . . 8
⊢ (ℕ
∈ Fin ↔ ω ∈ Fin) |
| 63 | | iunid 4575 |
. . . . . . . . . . 11
⊢ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))){𝑐} = ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 64 | 63 | imaeq2i 5464 |
. . . . . . . . . 10
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))){𝑐}) = (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))) |
| 65 | | imaiun 6503 |
. . . . . . . . . 10
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))){𝑐}) = ∪
𝑐 ∈ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) |
| 66 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ V |
| 67 | 66, 55 | fnmpti 6022 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) Fn ℕ |
| 68 | | dffn3 6054 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) Fn ℕ ↔ (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))) |
| 69 | 67, 68 | mpbi 220 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 70 | | fimacnv 6347 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))) = ℕ) |
| 71 | 69, 70 | ax-mp 5 |
. . . . . . . . . 10
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))) = ℕ |
| 72 | 64, 65, 71 | 3eqtr3ri 2653 |
. . . . . . . . 9
⊢ ℕ =
∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) |
| 73 | 72 | eleq1i 2692 |
. . . . . . . 8
⊢ (ℕ
∈ Fin ↔ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 74 | 62, 73 | bitr3i 266 |
. . . . . . 7
⊢ (ω
∈ Fin ↔ ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 75 | 59, 74 | mtbi 312 |
. . . . . 6
⊢ ¬
∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin |
| 76 | | ralnex 2992 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 77 | 76 | rexbii 3041 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∃𝑖 ∈ ℕ ¬ ∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 78 | | rexnal 2995 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
ℕ ¬ ∃𝑘
∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 79 | 77, 78 | bitri 264 |
. . . . . . . . . 10
⊢
(∃𝑖 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 80 | 79 | ralbii 2980 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 ↔ ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 81 | | ralnex 2992 |
. . . . . . . . 9
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 82 | 80, 81 | bitri 264 |
. . . . . . . 8
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 83 | | nnuz 11723 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 84 | | elnnuz 11724 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ ↔ 𝑖 ∈
(ℤ≥‘1)) |
| 85 | | fzouzsplit 12503 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈
(ℤ≥‘1) → (ℤ≥‘1) =
((1..^𝑖) ∪
(ℤ≥‘𝑖))) |
| 86 | 84, 85 | sylbi 207 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ →
(ℤ≥‘1) = ((1..^𝑖) ∪ (ℤ≥‘𝑖))) |
| 87 | 83, 86 | syl5eq 2668 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ℕ =
((1..^𝑖) ∪
(ℤ≥‘𝑖))) |
| 88 | 87 | difeq1d 3727 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → (ℕ
∖ (1..^𝑖)) =
(((1..^𝑖) ∪
(ℤ≥‘𝑖)) ∖ (1..^𝑖))) |
| 89 | | uncom 3757 |
. . . . . . . . . . . . . . . 16
⊢
((1..^𝑖) ∪
(ℤ≥‘𝑖)) = ((ℤ≥‘𝑖) ∪ (1..^𝑖)) |
| 90 | 89 | difeq1i 3724 |
. . . . . . . . . . . . . . 15
⊢
(((1..^𝑖) ∪
(ℤ≥‘𝑖)) ∖ (1..^𝑖)) = (((ℤ≥‘𝑖) ∪ (1..^𝑖)) ∖ (1..^𝑖)) |
| 91 | | difun2 4048 |
. . . . . . . . . . . . . . 15
⊢
(((ℤ≥‘𝑖) ∪ (1..^𝑖)) ∖ (1..^𝑖)) = ((ℤ≥‘𝑖) ∖ (1..^𝑖)) |
| 92 | 90, 91 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢
(((1..^𝑖) ∪
(ℤ≥‘𝑖)) ∖ (1..^𝑖)) = ((ℤ≥‘𝑖) ∖ (1..^𝑖)) |
| 93 | 88, 92 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (ℕ
∖ (1..^𝑖)) =
((ℤ≥‘𝑖) ∖ (1..^𝑖))) |
| 94 | | difss 3737 |
. . . . . . . . . . . . 13
⊢
((ℤ≥‘𝑖) ∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖) |
| 95 | 93, 94 | syl6eqss 3655 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → (ℕ
∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖)) |
| 96 | | ssralv 3666 |
. . . . . . . . . . . 12
⊢ ((ℕ
∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖) → (∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐)) |
| 97 | 95, 96 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ →
(∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐)) |
| 98 | | impexp 462 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℕ ∧ ¬
𝑘 ∈ (1..^𝑖)) → ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐) ↔ (𝑘 ∈ ℕ → (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐))) |
| 99 | | eldif 3584 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (ℕ ∖
(1..^𝑖)) ↔ (𝑘 ∈ ℕ ∧ ¬
𝑘 ∈ (1..^𝑖))) |
| 100 | 99 | imbi1i 339 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (ℕ ∖
(1..^𝑖)) → ¬
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) ↔ ((𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ (1..^𝑖)) → ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐)) |
| 101 | | con34b 306 |
. . . . . . . . . . . . . . . 16
⊢
((((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)) ↔ (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐)) |
| 102 | 101 | imbi2i 326 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ →
(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖))) ↔ (𝑘 ∈ ℕ → (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐))) |
| 103 | 98, 100, 102 | 3bitr4i 292 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (ℕ ∖
(1..^𝑖)) → ¬
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) ↔ (𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
| 104 | 103 | albii 1747 |
. . . . . . . . . . . . 13
⊢
(∀𝑘(𝑘 ∈ (ℕ ∖
(1..^𝑖)) → ¬
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
| 105 | | df-ral 2917 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(ℕ ∖ (1..^𝑖))
¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∀𝑘(𝑘 ∈ (ℕ ∖ (1..^𝑖)) → ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐)) |
| 106 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ∈ V |
| 107 | 55 | mptiniseg 5629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ V → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) = {𝑘 ∈ ℕ ∣ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐}) |
| 108 | 106, 107 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) = {𝑘 ∈ ℕ ∣ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐} |
| 109 | 108 | sseq1i 3629 |
. . . . . . . . . . . . . 14
⊢ ((◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) ↔ {𝑘 ∈ ℕ ∣ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐} ⊆ (1..^𝑖)) |
| 110 | | rabss 3679 |
. . . . . . . . . . . . . 14
⊢ ({𝑘 ∈ ℕ ∣
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐} ⊆ (1..^𝑖) ↔ ∀𝑘 ∈ ℕ (((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖))) |
| 111 | | df-ral 2917 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
ℕ (((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
| 112 | 109, 110,
111 | 3bitri 286 |
. . . . . . . . . . . . 13
⊢ ((◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → 𝑘 ∈ (1..^𝑖)))) |
| 113 | 104, 105,
112 | 3bitr4i 292 |
. . . . . . . . . . . 12
⊢
(∀𝑘 ∈
(ℕ ∖ (1..^𝑖))
¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 ↔ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖)) |
| 114 | | fzofi 12773 |
. . . . . . . . . . . . 13
⊢
(1..^𝑖) ∈
Fin |
| 115 | | ssfi 8180 |
. . . . . . . . . . . . 13
⊢
(((1..^𝑖) ∈ Fin
∧ (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖)) → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 116 | 114, 115 | mpan 706 |
. . . . . . . . . . . 12
⊢ ((◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 117 | 113, 116 | sylbi 207 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℕ ∖ (1..^𝑖))
¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 118 | 97, 117 | syl6 35 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ →
(∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)) |
| 119 | 118 | rexlimiv 3027 |
. . . . . . . . 9
⊢
(∃𝑖 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑖) ¬ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → (◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 120 | 119 | ralimi 2952 |
. . . . . . . 8
⊢
(∀𝑐 ∈
ran (𝑘 ∈ ℕ
↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑖) ¬ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 121 | 82, 120 | sylbir 225 |
. . . . . . 7
⊢ (¬
∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 122 | | iunfi 8254 |
. . . . . . . 8
⊢ ((ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∈ Fin ∧ ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) → ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) |
| 123 | 122 | ex 450 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∈ Fin → (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin → ∪ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)) |
| 124 | 121, 123 | syl5 34 |
. . . . . 6
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∈ Fin → (¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∪
𝑐 ∈ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))(◡(𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)) |
| 125 | 75, 124 | mt3i 141 |
. . . . 5
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐) |
| 126 | | ssrexv 3667 |
. . . . 5
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 → (∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐)) |
| 127 | 58, 125, 126 | syl2im 40 |
. . . 4
⊢ (𝜑 → (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∈ Fin →
∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐)) |
| 128 | | unitssre 12319 |
. . . . . . . . . . . 12
⊢ (0[,]1)
⊆ ℝ |
| 129 | | elmapi 7879 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ((0[,]1)
↑𝑚 (1...𝑁)) → 𝑐:(1...𝑁)⟶(0[,]1)) |
| 130 | 129, 48 | eleq2s 2719 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝐼 → 𝑐:(1...𝑁)⟶(0[,]1)) |
| 131 | 130 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) → (𝑐‘𝑚) ∈ (0[,]1)) |
| 132 | 128, 131 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) → (𝑐‘𝑚) ∈ ℝ) |
| 133 | | nnrp 11842 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ+) |
| 134 | 133 | rpreccld 11882 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → (1 /
𝑖) ∈
ℝ+) |
| 135 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 136 | 135 | rexmet 22594 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
| 137 | | blcntr 22218 |
. . . . . . . . . . . 12
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ (𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ+)
→ (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 138 | 136, 137 | mp3an1 1411 |
. . . . . . . . . . 11
⊢ (((𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ+)
→ (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 139 | 132, 134,
138 | syl2an 494 |
. . . . . . . . . 10
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) ∧ 𝑖 ∈ ℕ) → (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 140 | 139 | an32s 846 |
. . . . . . . . 9
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 141 | | fveq1 6190 |
. . . . . . . . . 10
⊢
(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → (((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) = (𝑐‘𝑚)) |
| 142 | 141 | eleq1d 2686 |
. . . . . . . . 9
⊢
(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ((((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 143 | 140, 142 | syl5ibrcom 237 |
. . . . . . . 8
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → (((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 144 | 143 | ralrimdva 2969 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 145 | 144 | reximdv 3016 |
. . . . . 6
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 146 | 145 | ralimdva 2962 |
. . . . 5
⊢ (𝑐 ∈ 𝐼 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 147 | 146 | reximia 3009 |
. . . 4
⊢
(∃𝑐 ∈
𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 148 | 127, 147 | syl6 35 |
. . 3
⊢ (𝜑 → (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∈ Fin →
∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 149 | | poimir.r |
. . . . . . . 8
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
| 150 | 51, 50 | ixpconst 7918 |
. . . . . . . . 9
⊢ X𝑛 ∈
(1...𝑁)(0[,]1) = ((0[,]1)
↑𝑚 (1...𝑁)) |
| 151 | 48, 150 | eqtr4i 2647 |
. . . . . . . 8
⊢ 𝐼 = X𝑛 ∈ (1...𝑁)(0[,]1) |
| 152 | 149, 151 | oveq12i 6662 |
. . . . . . 7
⊢ (𝑅 ↾t 𝐼) =
((∏t‘((1...𝑁) × {(topGen‘ran (,))}))
↾t X𝑛 ∈ (1...𝑁)(0[,]1)) |
| 153 | | fzfid 12772 |
. . . . . . . . 9
⊢ (⊤
→ (1...𝑁) ∈
Fin) |
| 154 | | retop 22565 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
| 155 | 154 | fconst6 6095 |
. . . . . . . . . 10
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top |
| 156 | 155 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top) |
| 157 | 50 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑛
∈ (1...𝑁)) →
(0[,]1) ∈ V) |
| 158 | 153, 156,
157 | ptrest 33408 |
. . . . . . . 8
⊢ (⊤
→ ((∏t‘((1...𝑁) × {(topGen‘ran (,))}))
↾t X𝑛 ∈ (1...𝑁)(0[,]1)) = (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1))))) |
| 159 | 158 | trud 1493 |
. . . . . . 7
⊢
((∏t‘((1...𝑁) × {(topGen‘ran (,))}))
↾t X𝑛 ∈ (1...𝑁)(0[,]1)) = (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1)))) |
| 160 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(topGen‘ran (,)) ∈ V |
| 161 | 160 | fvconst2 6469 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛) =
(topGen‘ran (,))) |
| 162 | 161 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) → ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1)) = ((topGen‘ran (,)) ↾t
(0[,]1))) |
| 163 | 162 | mpteq2ia 4740 |
. . . . . . . . 9
⊢ (𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1))) = (𝑛 ∈ (1...𝑁) ↦ ((topGen‘ran (,))
↾t (0[,]1))) |
| 164 | | fconstmpt 5163 |
. . . . . . . . 9
⊢
((1...𝑁) ×
{((topGen‘ran (,)) ↾t (0[,]1))}) = (𝑛 ∈ (1...𝑁) ↦ ((topGen‘ran (,))
↾t (0[,]1))) |
| 165 | 163, 164 | eqtr4i 2647 |
. . . . . . . 8
⊢ (𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1))) = ((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))}) |
| 166 | 165 | fveq2i 6194 |
. . . . . . 7
⊢
(∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)
↾t (0[,]1)))) = (∏t‘((1...𝑁) × {((topGen‘ran
(,)) ↾t (0[,]1))})) |
| 167 | 152, 159,
166 | 3eqtri 2648 |
. . . . . 6
⊢ (𝑅 ↾t 𝐼) =
(∏t‘((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))})) |
| 168 | | fzfi 12771 |
. . . . . . 7
⊢
(1...𝑁) ∈
Fin |
| 169 | | dfii2 22685 |
. . . . . . . . 9
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
| 170 | | iicmp 22689 |
. . . . . . . . 9
⊢ II ∈
Comp |
| 171 | 169, 170 | eqeltrri 2698 |
. . . . . . . 8
⊢
((topGen‘ran (,)) ↾t (0[,]1)) ∈
Comp |
| 172 | 171 | fconst6 6095 |
. . . . . . 7
⊢
((1...𝑁) ×
{((topGen‘ran (,)) ↾t (0[,]1))}):(1...𝑁)⟶Comp |
| 173 | | ptcmpfi 21616 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ ((1...𝑁) ×
{((topGen‘ran (,)) ↾t (0[,]1))}):(1...𝑁)⟶Comp) →
(∏t‘((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))})) ∈ Comp) |
| 174 | 168, 172,
173 | mp2an 708 |
. . . . . 6
⊢
(∏t‘((1...𝑁) × {((topGen‘ran (,))
↾t (0[,]1))})) ∈ Comp |
| 175 | 167, 174 | eqeltri 2697 |
. . . . 5
⊢ (𝑅 ↾t 𝐼) ∈ Comp |
| 176 | | rehaus 22602 |
. . . . . . . . . . . 12
⊢
(topGen‘ran (,)) ∈ Haus |
| 177 | 176 | fconst6 6095 |
. . . . . . . . . . 11
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Haus |
| 178 | | pthaus 21441 |
. . . . . . . . . . 11
⊢
(((1...𝑁) ∈ Fin
∧ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Haus) →
(∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈
Haus) |
| 179 | 168, 177,
178 | mp2an 708 |
. . . . . . . . . 10
⊢
(∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈
Haus |
| 180 | 149, 179 | eqeltri 2697 |
. . . . . . . . 9
⊢ 𝑅 ∈ Haus |
| 181 | | haustop 21135 |
. . . . . . . . 9
⊢ (𝑅 ∈ Haus → 𝑅 ∈ Top) |
| 182 | 180, 181 | ax-mp 5 |
. . . . . . . 8
⊢ 𝑅 ∈ Top |
| 183 | | reex 10027 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
| 184 | | mapss 7900 |
. . . . . . . . . 10
⊢ ((ℝ
∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1)
↑𝑚 (1...𝑁)) ⊆ (ℝ
↑𝑚 (1...𝑁))) |
| 185 | 183, 128,
184 | mp2an 708 |
. . . . . . . . 9
⊢ ((0[,]1)
↑𝑚 (1...𝑁)) ⊆ (ℝ
↑𝑚 (1...𝑁)) |
| 186 | 48, 185 | eqsstri 3635 |
. . . . . . . 8
⊢ 𝐼 ⊆ (ℝ
↑𝑚 (1...𝑁)) |
| 187 | | uniretop 22566 |
. . . . . . . . . . 11
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 188 | 149, 187 | ptuniconst 21401 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∈ Fin
∧ (topGen‘ran (,)) ∈ Top) → (ℝ
↑𝑚 (1...𝑁)) = ∪ 𝑅) |
| 189 | 168, 154,
188 | mp2an 708 |
. . . . . . . . 9
⊢ (ℝ
↑𝑚 (1...𝑁)) = ∪ 𝑅 |
| 190 | 189 | restuni 20966 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ
↑𝑚 (1...𝑁))) → 𝐼 = ∪ (𝑅 ↾t 𝐼)) |
| 191 | 182, 186,
190 | mp2an 708 |
. . . . . . 7
⊢ 𝐼 = ∪
(𝑅 ↾t
𝐼) |
| 192 | 191 | bwth 21213 |
. . . . . 6
⊢ (((𝑅 ↾t 𝐼) ∈ Comp ∧ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ ¬ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∈ Fin) →
∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))))) |
| 193 | 192 | 3expia 1267 |
. . . . 5
⊢ (((𝑅 ↾t 𝐼) ∈ Comp ∧ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ⊆ 𝐼) → (¬ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∈ Fin →
∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))))) |
| 194 | 175, 58, 193 | sylancr 695 |
. . . 4
⊢ (𝜑 → (¬ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))))) |
| 195 | | cmptop 21198 |
. . . . . . . . 9
⊢ ((𝑅 ↾t 𝐼) ∈ Comp → (𝑅 ↾t 𝐼) ∈ Top) |
| 196 | 175, 195 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑅 ↾t 𝐼) ∈ Top |
| 197 | 191 | islp3 20950 |
. . . . . . . 8
⊢ (((𝑅 ↾t 𝐼) ∈ Top ∧ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
| 198 | 196, 197 | mp3an1 1411 |
. . . . . . 7
⊢ ((ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
| 199 | 58, 198 | sylan 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
| 200 | | fzfid 12772 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (1...𝑁) ∈ Fin) |
| 201 | 155 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → ((1...𝑁) × {(topGen‘ran
(,))}):(1...𝑁)⟶Top) |
| 202 | | nnrecre 11057 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (1 /
𝑖) ∈
ℝ) |
| 203 | 202 | rexrd 10089 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ → (1 /
𝑖) ∈
ℝ*) |
| 204 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
| 205 | 135, 204 | tgioo 22599 |
. . . . . . . . . . . . . . . . . 18
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
| 206 | 205 | blopn 22305 |
. . . . . . . . . . . . . . . . 17
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ (𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ*)
→ ((𝑐‘𝑚)(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
| 207 | 136, 206 | mp3an1 1411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐‘𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ*)
→ ((𝑐‘𝑚)(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
| 208 | 132, 203,
207 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑚 ∈ (1...𝑁)) ∧ 𝑖 ∈ ℕ) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
| 209 | 208 | an32s 846 |
. . . . . . . . . . . . . 14
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran
(,))) |
| 210 | 160 | fvconst2 6469 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑚) =
(topGen‘ran (,))) |
| 211 | 210 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑚) =
(topGen‘ran (,))) |
| 212 | 209, 211 | eleqtrrd 2704 |
. . . . . . . . . . . . 13
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ (((1...𝑁) × {(topGen‘ran
(,))})‘𝑚)) |
| 213 | | noel 3919 |
. . . . . . . . . . . . . . . 16
⊢ ¬
𝑚 ∈
∅ |
| 214 | | difid 3948 |
. . . . . . . . . . . . . . . . 17
⊢
((1...𝑁) ∖
(1...𝑁)) =
∅ |
| 215 | 214 | eleq2i 2693 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) ↔ 𝑚 ∈ ∅) |
| 216 | 213, 215 | mtbir 313 |
. . . . . . . . . . . . . . 15
⊢ ¬
𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) |
| 217 | 216 | pm2.21i 116 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) = ∪
(((1...𝑁) ×
{(topGen‘ran (,))})‘𝑚)) |
| 218 | 217 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) ∧ 𝑚 ∈ ((1...𝑁) ∖ (1...𝑁))) → ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) = ∪
(((1...𝑁) ×
{(topGen‘ran (,))})‘𝑚)) |
| 219 | 200, 201,
200, 212, 218 | ptopn 21386 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈
(∏t‘((1...𝑁) × {(topGen‘ran
(,))}))) |
| 220 | 219, 149 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅) |
| 221 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢ ((0[,]1)
↑𝑚 (1...𝑁)) ∈ V |
| 222 | 48, 221 | eqeltri 2697 |
. . . . . . . . . . . 12
⊢ 𝐼 ∈ V |
| 223 | | elrestr 16089 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Haus ∧ 𝐼 ∈ V ∧ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅) → (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼)) |
| 224 | 180, 222,
223 | mp3an12 1414 |
. . . . . . . . . . 11
⊢ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅 → (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼)) |
| 225 | 220, 224 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼)) |
| 226 | | difss 3737 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) |
| 227 | | imassrn 5477 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ⊆ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 228 | 226, 227 | sstri 3612 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 229 | 228, 58 | syl5ss 3614 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼) |
| 230 | | haust1 21156 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Haus → 𝑅 ∈ Fre) |
| 231 | 180, 230 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 𝑅 ∈ Fre |
| 232 | | restt1 21171 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Fre ∧ 𝐼 ∈ V) → (𝑅 ↾t 𝐼) ∈ Fre) |
| 233 | 231, 222,
232 | mp2an 708 |
. . . . . . . . . . . 12
⊢ (𝑅 ↾t 𝐼) ∈ Fre |
| 234 | | funmpt 5926 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) |
| 235 | | imafi 8259 |
. . . . . . . . . . . . . 14
⊢ ((Fun
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∧ (1..^𝑖) ∈ Fin) → ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin) |
| 236 | 234, 114,
235 | mp2an 708 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin |
| 237 | | diffi 8192 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin) |
| 238 | 236, 237 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin |
| 239 | 191 | t1ficld 21131 |
. . . . . . . . . . . 12
⊢ (((𝑅 ↾t 𝐼) ∈ Fre ∧ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼 ∧ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin) → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) |
| 240 | 233, 238,
239 | mp3an13 1415 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼 → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) |
| 241 | 229, 240 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) |
| 242 | 191 | difopn 20838 |
. . . . . . . . . 10
⊢ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅 ↾t 𝐼) ∧ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅 ↾t 𝐼))) → ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼)) |
| 243 | 225, 241,
242 | syl2anr 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ)) → ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼)) |
| 244 | 243 | anassrs 680 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼)) |
| 245 | | eleq2 2690 |
. . . . . . . . . . 11
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (𝑐 ∈ 𝑣 ↔ 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})))) |
| 246 | | ineq1 3807 |
. . . . . . . . . . . 12
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) = (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐}))) |
| 247 | 246 | neeq1d 2853 |
. . . . . . . . . . 11
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → ((𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ ↔ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) |
| 248 | 245, 247 | imbi12d 334 |
. . . . . . . . . 10
⊢ (𝑣 = ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → ((𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) ↔ (𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))) |
| 249 | 248 | rspcva 3307 |
. . . . . . . . 9
⊢ ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼) ∧ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) → (𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) |
| 250 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐:(1...𝑁)⟶(0[,]1) → 𝑐 Fn (1...𝑁)) |
| 251 | 130, 250 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝐼 → 𝑐 Fn (1...𝑁)) |
| 252 | 251 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 Fn (1...𝑁)) |
| 253 | 140 | ralrimiva 2966 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → ∀𝑚 ∈ (1...𝑁)(𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 254 | 106 | elixp 7915 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑐 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑐‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 255 | 252, 253,
254 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 256 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ 𝐼) |
| 257 | 255, 256 | elind 3798 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼)) |
| 258 | | neldifsnd 4322 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → ¬ 𝑐 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) |
| 259 | 257, 258 | eldifd 3585 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))) |
| 260 | 259 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))) |
| 261 | | simplr 792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) → ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 262 | 261 | anim1i 592 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) → (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
| 263 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}) → 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) |
| 264 | 262, 263 | anim12i 590 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) → ((∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))))) |
| 265 | | elin 3796 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ (𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐}))) |
| 266 | | andir 912 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑗 Fn
(1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ∨ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))) |
| 267 | | eldif 3584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ (𝑗 ∈ (X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∧ ¬ 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))) |
| 268 | | elin 3796 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ↔ (𝑗 ∈ X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ 𝑗 ∈ 𝐼)) |
| 269 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑗 ∈ V |
| 270 | 269 | elixp 7915 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 271 | 270 | anbi1i 731 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ 𝑗 ∈ 𝐼) ↔ ((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼)) |
| 272 | 268, 271 | bitri 264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ↔ ((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼)) |
| 273 | | ianor 509 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ ¬ 𝑗 ∈ {𝑐}) ↔ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) |
| 274 | | eldif 3584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ↔ (𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ ¬ 𝑗 ∈ {𝑐})) |
| 275 | 273, 274 | xchnxbir 323 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝑗 ∈ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ↔ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) |
| 276 | 272, 275 | anbi12i 733 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∧ ¬ 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐}))) |
| 277 | | andi 911 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}))) |
| 278 | 267, 276,
277 | 3bitri 286 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}))) |
| 279 | | eldif 3584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐}) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) |
| 280 | 278, 279 | anbi12i 733 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))) |
| 281 | | pm3.24 926 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬
(¬ 𝑗 ∈ {𝑐} ∧ ¬ ¬ 𝑗 ∈ {𝑐}) |
| 282 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) → ¬ ¬ 𝑗 ∈ {𝑐}) |
| 283 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}) → ¬ 𝑗 ∈ {𝑐}) |
| 284 | 282, 283 | anim12ci 591 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) → (¬ 𝑗 ∈ {𝑐} ∧ ¬ ¬ 𝑗 ∈ {𝑐})) |
| 285 | 281, 284 | mto 188 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) |
| 286 | 285 | biorfi 422 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ∨ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))) |
| 287 | 266, 280,
286 | 3bitr4i 292 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))) |
| 288 | 265, 287 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗 ∈ 𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))) |
| 289 | | ancom 466 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ↔ (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))))) |
| 290 | | anass 681 |
. . . . . . . . . . . . . . . 16
⊢
(((∀𝑚 ∈
(1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ↔ (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))))) |
| 291 | 289, 290 | bitr4i 267 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) ↔ ((∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))))) |
| 292 | 264, 288,
291 | 3imtr4i 281 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) → ((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 293 | | ancom 466 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
| 294 | | eldif 3584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
| 295 | 293, 294 | bitr4i 267 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ↔ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)))) |
| 296 | | imadmrn 5476 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ dom (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) = ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 297 | 66, 55 | dmmpti 6023 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) = ℕ |
| 298 | 297 | imaeq2i 5464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ dom (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) = ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “
ℕ) |
| 299 | 296, 298 | eqtr3i 2646 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) = ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “
ℕ) |
| 300 | 299 | difeq1i 3724 |
. . . . . . . . . . . . . . . . . . 19
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) = (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ ℕ) ∖
((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) |
| 301 | | imadifss 33384 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ ℕ) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (ℕ ∖
(1..^𝑖))) |
| 302 | 300, 301 | eqsstri 3635 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (ℕ ∖
(1..^𝑖))) |
| 303 | | imass2 5501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℕ
∖ (1..^𝑖)) ⊆
(ℤ≥‘𝑖) → ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (ℕ ∖
(1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖))) |
| 304 | 95, 303 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖))) |
| 305 | | df-ima 5127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖)) = ran ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ↾
(ℤ≥‘𝑖)) |
| 306 | | uznnssnn 11735 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ ℕ →
(ℤ≥‘𝑖) ⊆ ℕ) |
| 307 | 306 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ↾
(ℤ≥‘𝑖)) = (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) |
| 308 | 307 | rneqd 5353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ → ran
((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ↾
(ℤ≥‘𝑖)) = ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) |
| 309 | 305, 308 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “
(ℤ≥‘𝑖)) = ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) |
| 310 | 304, 309 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ran (𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))) |
| 311 | 302, 310 | syl5ss 3614 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ → (ran
(𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ran (𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))) |
| 312 | 311 | sseld 3602 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ → (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) → 𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))))) |
| 313 | 295, 312 | syl5bi 232 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℕ → ((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) → 𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))))) |
| 314 | 313 | anim1d 588 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ → (((¬
𝑗 ∈ ((𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) → (𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))))) |
| 315 | 292, 314 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → (𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) → (𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))))) |
| 316 | 315 | eximdv 1846 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ →
(∃𝑗 𝑗 ∈ (((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) → ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))))) |
| 317 | | n0 3931 |
. . . . . . . . . . . 12
⊢ ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐}))) |
| 318 | 66 | rgenw 2924 |
. . . . . . . . . . . . . 14
⊢
∀𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ V |
| 319 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) = (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) |
| 320 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) → (𝑗‘𝑚) = (((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚)) |
| 321 | 320 | eleq1d 2686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) → ((𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ (((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 322 | 321 | ralbidv 2986 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})) → (∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 323 | 319, 322 | rexrnmpt 6369 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑖)((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})) ∈ V → (∃𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 324 | 318, 323 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈ ran
(𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 325 | | df-rex 2918 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈ ran
(𝑘 ∈
(ℤ≥‘𝑖) ↦ ((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 326 | 324, 325 | bitr3i 266 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ≥‘𝑖) ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 327 | 316, 317,
326 | 3imtr4g 285 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 328 | 327 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 329 | 260, 328 | embantd 59 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 330 | 249, 329 | syl5 34 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → ((((X𝑚 ∈
(1...𝑁)((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅 ↾t 𝐼) ∧ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 331 | 244, 330 | mpand 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑖 ∈ ℕ) → (∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 332 | 331 | ralrimdva 2969 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 333 | 199, 332 | sylbid 230 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) → ∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 334 | 333 | reximdva 3017 |
. . . 4
⊢ (𝜑 → (∃𝑐 ∈ 𝐼 𝑐 ∈ ((limPt‘(𝑅 ↾t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st
‘(𝐺‘𝑘)) ∘𝑓 /
((1...𝑁) × {𝑘})))) → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 335 | 194, 334 | syld 47 |
. . 3
⊢ (𝜑 → (¬ ran (𝑘 ∈ ℕ ↦
((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)))) |
| 336 | 148, 335 | pm2.61d 170 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖))) |
| 337 | | poimir.0 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 338 | | poimir.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
| 339 | | poimirlem30.x |
. . . 4
⊢ 𝑋 = ((𝐹‘(((1st ‘(𝐺‘𝑘)) ∘𝑓 +
((((2nd ‘(𝐺‘𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(𝐺‘𝑘)) “ ((𝑗 + 1)...𝑁)) × {0})))
∘𝑓 / ((1...𝑁) × {𝑘})))‘𝑛) |
| 340 | | poimirlem30.4 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ◡ ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋) |
| 341 | 337, 48, 149, 338, 339, 34, 39, 340 | poimirlem29 33438 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈
(ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) |
| 342 | 341 | reximdv 3016 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ 𝐼 ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ≥‘𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺‘𝑘)) ∘𝑓 / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐‘𝑚)(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))(1 / 𝑖)) → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) |
| 343 | 336, 342 | mpd 15 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |