Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumnncl Structured version   Visualization version   GIF version

Theorem fsumnncl 39803
Description: Closure of a non empty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumnncl.an0 (𝜑𝐴 ≠ ∅)
fsumnncl.afi (𝜑𝐴 ∈ Fin)
fsumnncl.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
Assertion
Ref Expression
fsumnncl (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumnncl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fsumnncl.afi . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumnncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
32nnnn0d 11351 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)
41, 3fsumnn0cl 14467 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
5 fsumnncl.an0 . . . . 5 (𝜑𝐴 ≠ ∅)
6 n0 3931 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑗 𝑗𝐴)
75, 6sylib 208 . . . 4 (𝜑 → ∃𝑗 𝑗𝐴)
8 0red 10041 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 ∈ ℝ)
9 nfv 1843 . . . . . . . . . . . 12 𝑘(𝜑𝑗𝐴)
10 nfcsb1v 3549 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵
1110nfel1 2779 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘𝐵 ∈ ℕ
129, 11nfim 1825 . . . . . . . . . . 11 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
13 eleq1 2689 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1413anbi2d 740 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
15 csbeq1a 3542 . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1615eleq1d 2686 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 ∈ ℕ ↔ 𝑗 / 𝑘𝐵 ∈ ℕ))
1714, 16imbi12d 334 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℕ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)))
1812, 17, 2chvar 2262 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
1918nnred 11035 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
208, 19readdcld 10069 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ∈ ℝ)
21 diffi 8192 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴 ∖ {𝑗}) ∈ Fin)
221, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝑗}) ∈ Fin)
23 eldifi 3732 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∖ {𝑗}) → 𝑘𝐴)
2423adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝑘𝐴)
2524, 3syldan 487 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ0)
2622, 25fsumnn0cl 14467 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℕ0)
2726nn0red 11352 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2827adantr 481 . . . . . . . . 9 ((𝜑𝑗𝐴) → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2928, 19readdcld 10069 . . . . . . . 8 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) ∈ ℝ)
3018nnrpd 11870 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ+)
318, 30ltaddrpd 11905 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 < (0 + 𝑗 / 𝑘𝐵))
3226nn0ge0d 11354 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
3332adantr 481 . . . . . . . . 9 ((𝜑𝑗𝐴) → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
348, 28, 19, 33leadd1dd 10641 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ≤ (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
358, 20, 29, 31, 34ltletrd 10197 . . . . . . 7 ((𝜑𝑗𝐴) → 0 < (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
36 difsnid 4341 . . . . . . . . . . 11 (𝑗𝐴 → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3736adantl 482 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3837eqcomd 2628 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝐴 = ((𝐴 ∖ {𝑗}) ∪ {𝑗}))
3938sumeq1d 14431 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵)
4022adantr 481 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐴 ∖ {𝑗}) ∈ Fin)
41 simpr 477 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝐴)
42 neldifsnd 4322 . . . . . . . . 9 ((𝜑𝑗𝐴) → ¬ 𝑗 ∈ (𝐴 ∖ {𝑗}))
43 simpl 473 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝜑)
4443, 24, 2syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ)
4544nncnd 11036 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
4645adantlr 751 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
47 nnsscn 11025 . . . . . . . . . . 11 ℕ ⊆ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ℕ ⊆ ℂ)
4948, 18sseldd 3604 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
509, 10, 40, 41, 42, 46, 15, 49fsumsplitsn 14474 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
5139, 50eqtr2d 2657 . . . . . . 7 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) = Σ𝑘𝐴 𝐵)
5235, 51breqtrd 4679 . . . . . 6 ((𝜑𝑗𝐴) → 0 < Σ𝑘𝐴 𝐵)
5352ex 450 . . . . 5 (𝜑 → (𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
5453exlimdv 1861 . . . 4 (𝜑 → (∃𝑗 𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
557, 54mpd 15 . . 3 (𝜑 → 0 < Σ𝑘𝐴 𝐵)
564, 55jca 554 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
57 elnnnn0b 11337 . 2 𝑘𝐴 𝐵 ∈ ℕ ↔ (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
5856, 57sylibr 224 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  csb 3533  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177   class class class wbr 4653  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cle 10075  cn 11020  0cn0 11292  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator