MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1lem1 Structured version   Visualization version   GIF version

Theorem ramub1lem1 15730
Description: Lemma for ramub1 15732. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m (𝜑𝑀 ∈ ℕ)
ramub1.r (𝜑𝑅 ∈ Fin)
ramub1.f (𝜑𝐹:𝑅⟶ℕ)
ramub1.g 𝐺 = (𝑥𝑅 ↦ (𝑀 Ramsey (𝑦𝑅 ↦ if(𝑦 = 𝑥, ((𝐹𝑥) − 1), (𝐹𝑦)))))
ramub1.1 (𝜑𝐺:𝑅⟶ℕ0)
ramub1.2 (𝜑 → ((𝑀 − 1) Ramsey 𝐺) ∈ ℕ0)
ramub1.3 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramub1.4 (𝜑𝑆 ∈ Fin)
ramub1.5 (𝜑 → (#‘𝑆) = (((𝑀 − 1) Ramsey 𝐺) + 1))
ramub1.6 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
ramub1.x (𝜑𝑋𝑆)
ramub1.h 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
ramub1.d (𝜑𝐷𝑅)
ramub1.w (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
ramub1.7 (𝜑 → (𝐺𝐷) ≤ (#‘𝑊))
ramub1.8 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
ramub1.e (𝜑𝐸𝑅)
ramub1.v (𝜑𝑉𝑊)
ramub1.9 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
ramub1.s (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
Assertion
Ref Expression
ramub1lem1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Distinct variable groups:   𝑥,𝑢,𝐷   𝑦,𝑢,𝑧,𝐹,𝑥   𝑎,𝑏,𝑖,𝑢,𝑥,𝑦,𝑧,𝑀   𝐺,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑢,𝑅,𝑥,𝑦,𝑧   𝑊,𝑎,𝑖,𝑢   𝜑,𝑢,𝑥,𝑦,𝑧   𝑆,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧   𝑉,𝑎,𝑖,𝑥,𝑧   𝑢,𝐶,𝑥,𝑦,𝑧   𝑢,𝐻,𝑥,𝑦,𝑧   𝑢,𝐾,𝑥,𝑦,𝑧   𝑥,𝐸,𝑧   𝑋,𝑎,𝑖,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐶(𝑖,𝑎,𝑏)   𝐷(𝑦,𝑧,𝑖,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑆(𝑏)   𝐸(𝑦,𝑢,𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑖,𝑎,𝑏)   𝐾(𝑖,𝑎,𝑏)   𝑉(𝑦,𝑢,𝑏)   𝑊(𝑥,𝑦,𝑧,𝑏)   𝑋(𝑏)

Proof of Theorem ramub1lem1
StepHypRef Expression
1 ramub1.v . . . . . . . 8 (𝜑𝑉𝑊)
2 ramub1.w . . . . . . . 8 (𝜑𝑊 ⊆ (𝑆 ∖ {𝑋}))
31, 2sstrd 3613 . . . . . . 7 (𝜑𝑉 ⊆ (𝑆 ∖ {𝑋}))
43difss2d 3740 . . . . . 6 (𝜑𝑉𝑆)
5 ramub1.x . . . . . . 7 (𝜑𝑋𝑆)
65snssd 4340 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝑆)
74, 6unssd 3789 . . . . 5 (𝜑 → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
8 ramub1.4 . . . . . 6 (𝜑𝑆 ∈ Fin)
9 elpw2g 4827 . . . . . 6 (𝑆 ∈ Fin → ((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑉 ∪ {𝑋}) ⊆ 𝑆))
108, 9syl 17 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ↔ (𝑉 ∪ {𝑋}) ⊆ 𝑆))
117, 10mpbird 247 . . . 4 (𝜑 → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
1211adantr 481 . . 3 ((𝜑𝐸 = 𝐷) → (𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆)
13 iftrue 4092 . . . . . . 7 (𝐸 = 𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
1413adantl 482 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = ((𝐹𝐷) − 1))
15 ramub1.9 . . . . . . 7 (𝜑 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
1615adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
1714, 16eqbrtrrd 4677 . . . . 5 ((𝜑𝐸 = 𝐷) → ((𝐹𝐷) − 1) ≤ (#‘𝑉))
18 ramub1.f . . . . . . . . 9 (𝜑𝐹:𝑅⟶ℕ)
19 ramub1.d . . . . . . . . 9 (𝜑𝐷𝑅)
2018, 19ffvelrnd 6360 . . . . . . . 8 (𝜑 → (𝐹𝐷) ∈ ℕ)
2120adantr 481 . . . . . . 7 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℕ)
2221nnred 11035 . . . . . 6 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ∈ ℝ)
23 1red 10055 . . . . . 6 ((𝜑𝐸 = 𝐷) → 1 ∈ ℝ)
24 ssfi 8180 . . . . . . . . 9 ((𝑆 ∈ Fin ∧ 𝑉𝑆) → 𝑉 ∈ Fin)
258, 4, 24syl2anc 693 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
26 hashcl 13147 . . . . . . . 8 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
27 nn0re 11301 . . . . . . . 8 ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ)
2825, 26, 273syl 18 . . . . . . 7 (𝜑 → (#‘𝑉) ∈ ℝ)
2928adantr 481 . . . . . 6 ((𝜑𝐸 = 𝐷) → (#‘𝑉) ∈ ℝ)
3022, 23, 29lesubaddd 10624 . . . . 5 ((𝜑𝐸 = 𝐷) → (((𝐹𝐷) − 1) ≤ (#‘𝑉) ↔ (𝐹𝐷) ≤ ((#‘𝑉) + 1)))
3117, 30mpbid 222 . . . 4 ((𝜑𝐸 = 𝐷) → (𝐹𝐷) ≤ ((#‘𝑉) + 1))
32 fveq2 6191 . . . . 5 (𝐸 = 𝐷 → (𝐹𝐸) = (𝐹𝐷))
33 snidg 4206 . . . . . . . 8 (𝑋𝑆𝑋 ∈ {𝑋})
345, 33syl 17 . . . . . . 7 (𝜑𝑋 ∈ {𝑋})
353sseld 3602 . . . . . . . 8 (𝜑 → (𝑋𝑉𝑋 ∈ (𝑆 ∖ {𝑋})))
36 eldifn 3733 . . . . . . . 8 (𝑋 ∈ (𝑆 ∖ {𝑋}) → ¬ 𝑋 ∈ {𝑋})
3735, 36syl6 35 . . . . . . 7 (𝜑 → (𝑋𝑉 → ¬ 𝑋 ∈ {𝑋}))
3834, 37mt2d 131 . . . . . 6 (𝜑 → ¬ 𝑋𝑉)
39 hashunsng 13181 . . . . . . 7 (𝑋𝑆 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (#‘(𝑉 ∪ {𝑋})) = ((#‘𝑉) + 1)))
405, 39syl 17 . . . . . 6 (𝜑 → ((𝑉 ∈ Fin ∧ ¬ 𝑋𝑉) → (#‘(𝑉 ∪ {𝑋})) = ((#‘𝑉) + 1)))
4125, 38, 40mp2and 715 . . . . 5 (𝜑 → (#‘(𝑉 ∪ {𝑋})) = ((#‘𝑉) + 1))
4232, 41breqan12rd 4670 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})) ↔ (𝐹𝐷) ≤ ((#‘𝑉) + 1)))
4331, 42mpbird 247 . . 3 ((𝜑𝐸 = 𝐷) → (𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})))
44 snfi 8038 . . . . . . 7 {𝑋} ∈ Fin
45 unfi 8227 . . . . . . 7 ((𝑉 ∈ Fin ∧ {𝑋} ∈ Fin) → (𝑉 ∪ {𝑋}) ∈ Fin)
4625, 44, 45sylancl 694 . . . . . 6 (𝜑 → (𝑉 ∪ {𝑋}) ∈ Fin)
47 ramub1.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
4847nnnn0d 11351 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
49 ramub1.3 . . . . . . 7 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
5049hashbcval 15706 . . . . . 6 (((𝑉 ∪ {𝑋}) ∈ Fin ∧ 𝑀 ∈ ℕ0) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀})
5146, 48, 50syl2anc 693 . . . . 5 (𝜑 → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀})
5251adantr 481 . . . 4 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) = {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀})
53 simpl1l 1112 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
5449hashbcval 15706 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀})
5525, 48, 54syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀})
56 ramub1.s . . . . . . . . 9 (𝜑 → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
5755, 56eqsstr3d 3640 . . . . . . . 8 (𝜑 → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
5853, 57syl 17 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
59 simpr 477 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑉)
60 simpl3 1066 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → (#‘𝑥) = 𝑀)
61 rabid 3116 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑉 ∧ (#‘𝑥) = 𝑀))
6259, 60, 61sylanbrc 698 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 𝑀})
6358, 62sseldd 3604 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
64 simpl2 1065 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}))
6564elpwid 4170 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ (𝑉 ∪ {𝑋}))
66 simpl1l 1112 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝜑)
6766, 7syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑉 ∪ {𝑋}) ⊆ 𝑆)
6865, 67sstrd 3613 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥𝑆)
69 vex 3203 . . . . . . . . . . 11 𝑥 ∈ V
7069elpw 4164 . . . . . . . . . 10 (𝑥 ∈ 𝒫 𝑆𝑥𝑆)
7168, 70sylibr 224 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ 𝒫 𝑆)
72 simpl3 1066 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘𝑥) = 𝑀)
73 rabid 3116 . . . . . . . . 9 (𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀} ↔ (𝑥 ∈ 𝒫 𝑆 ∧ (#‘𝑥) = 𝑀))
7471, 72, 73sylanbrc 698 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7549hashbcval 15706 . . . . . . . . . 10 ((𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
768, 48, 75syl2anc 693 . . . . . . . . 9 (𝜑 → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7766, 76syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑆𝐶𝑀) = {𝑥 ∈ 𝒫 𝑆 ∣ (#‘𝑥) = 𝑀})
7874, 77eleqtrrd 2704 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝑆𝐶𝑀))
792difss2d 3740 . . . . . . . . . . . . . . 15 (𝜑𝑊𝑆)
80 ssfi 8180 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Fin ∧ 𝑊𝑆) → 𝑊 ∈ Fin)
818, 79, 80syl2anc 693 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ Fin)
82 nnm1nn0 11334 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
8347, 82syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 − 1) ∈ ℕ0)
8449hashbcval 15706 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ (𝑀 − 1) ∈ ℕ0) → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)})
8581, 83, 84syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) = {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)})
86 ramub1.8 . . . . . . . . . . . . 13 (𝜑 → (𝑊𝐶(𝑀 − 1)) ⊆ (𝐻 “ {𝐷}))
8785, 86eqsstr3d 3640 . . . . . . . . . . . 12 (𝜑 → {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
8866, 87syl 17 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)} ⊆ (𝐻 “ {𝐷}))
89 uncom 3757 . . . . . . . . . . . . . . . 16 (𝑉 ∪ {𝑋}) = ({𝑋} ∪ 𝑉)
9065, 89syl6sseq 3651 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ⊆ ({𝑋} ∪ 𝑉))
91 ssundif 4052 . . . . . . . . . . . . . . 15 (𝑥 ⊆ ({𝑋} ∪ 𝑉) ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9290, 91sylib 208 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑉)
9366, 1syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑉𝑊)
9492, 93sstrd 3613 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ⊆ 𝑊)
95 difexg 4808 . . . . . . . . . . . . . . 15 (𝑥 ∈ V → (𝑥 ∖ {𝑋}) ∈ V)
9669, 95ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∖ {𝑋}) ∈ V
9796elpw 4164 . . . . . . . . . . . . 13 ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ↔ (𝑥 ∖ {𝑋}) ⊆ 𝑊)
9894, 97sylibr 224 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊)
9966, 8syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑆 ∈ Fin)
100 ssfi 8180 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ Fin ∧ 𝑥𝑆) → 𝑥 ∈ Fin)
10199, 68, 100syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ Fin)
102 diffi 8192 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Fin → (𝑥 ∖ {𝑋}) ∈ Fin)
103101, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ Fin)
104 hashcl 13147 . . . . . . . . . . . . . . 15 ((𝑥 ∖ {𝑋}) ∈ Fin → (#‘(𝑥 ∖ {𝑋})) ∈ ℕ0)
105 nn0cn 11302 . . . . . . . . . . . . . . 15 ((#‘(𝑥 ∖ {𝑋})) ∈ ℕ0 → (#‘(𝑥 ∖ {𝑋})) ∈ ℂ)
106103, 104, 1053syl 18 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘(𝑥 ∖ {𝑋})) ∈ ℂ)
107 ax-1cn 9994 . . . . . . . . . . . . . 14 1 ∈ ℂ
108 pncan 10287 . . . . . . . . . . . . . 14 (((#‘(𝑥 ∖ {𝑋})) ∈ ℂ ∧ 1 ∈ ℂ) → (((#‘(𝑥 ∖ {𝑋})) + 1) − 1) = (#‘(𝑥 ∖ {𝑋})))
109106, 107, 108sylancl 694 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((#‘(𝑥 ∖ {𝑋})) + 1) − 1) = (#‘(𝑥 ∖ {𝑋})))
110 neldifsnd 4322 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑋 ∈ (𝑥 ∖ {𝑋}))
111 hashunsng 13181 . . . . . . . . . . . . . . . . 17 (𝑋𝑆 → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑥 ∖ {𝑋})) + 1)))
11266, 5, 1113syl 18 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((𝑥 ∖ {𝑋}) ∈ Fin ∧ ¬ 𝑋 ∈ (𝑥 ∖ {𝑋})) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑥 ∖ {𝑋})) + 1)))
113103, 110, 112mp2and 715 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = ((#‘(𝑥 ∖ {𝑋})) + 1))
114 undif1 4043 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∖ {𝑋}) ∪ {𝑋}) = (𝑥 ∪ {𝑋})
115 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ¬ 𝑥 ∈ 𝒫 𝑉)
11664, 115eldifd 3585 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉))
117 elpwunsn 4224 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 (𝑉 ∪ {𝑋}) ∖ 𝒫 𝑉) → 𝑋𝑥)
118116, 117syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑋𝑥)
119118snssd 4340 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → {𝑋} ⊆ 𝑥)
120 ssequn2 3786 . . . . . . . . . . . . . . . . . . 19 ({𝑋} ⊆ 𝑥 ↔ (𝑥 ∪ {𝑋}) = 𝑥)
121119, 120sylib 208 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∪ {𝑋}) = 𝑥)
122114, 121syl5req 2669 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
123122fveq2d 6195 . . . . . . . . . . . . . . . 16 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘𝑥) = (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
124123, 72eqtr3d 2658 . . . . . . . . . . . . . . 15 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝑀)
125113, 124eqtr3d 2658 . . . . . . . . . . . . . 14 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → ((#‘(𝑥 ∖ {𝑋})) + 1) = 𝑀)
126125oveq1d 6665 . . . . . . . . . . . . 13 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (((#‘(𝑥 ∖ {𝑋})) + 1) − 1) = (𝑀 − 1))
127109, 126eqtr3d 2658 . . . . . . . . . . . 12 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (#‘(𝑥 ∖ {𝑋})) = (𝑀 − 1))
128 fveq2 6191 . . . . . . . . . . . . . 14 (𝑢 = (𝑥 ∖ {𝑋}) → (#‘𝑢) = (#‘(𝑥 ∖ {𝑋})))
129128eqeq1d 2624 . . . . . . . . . . . . 13 (𝑢 = (𝑥 ∖ {𝑋}) → ((#‘𝑢) = (𝑀 − 1) ↔ (#‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
130129elrab 3363 . . . . . . . . . . . 12 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)} ↔ ((𝑥 ∖ {𝑋}) ∈ 𝒫 𝑊 ∧ (#‘(𝑥 ∖ {𝑋})) = (𝑀 − 1)))
13198, 127, 130sylanbrc 698 . . . . . . . . . . 11 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ 𝒫 𝑊 ∣ (#‘𝑢) = (𝑀 − 1)})
13288, 131sseldd 3604 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ (𝐻 “ {𝐷}))
133 ramub1.h . . . . . . . . . . . 12 𝐻 = (𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ↦ (𝐾‘(𝑢 ∪ {𝑋})))
134133mptiniseg 5629 . . . . . . . . . . 11 (𝐷𝑅 → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
13566, 19, 1343syl 18 . . . . . . . . . 10 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐻 “ {𝐷}) = {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
136132, 135eleqtrd 2703 . . . . . . . . 9 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷})
137 uneq1 3760 . . . . . . . . . . . . 13 (𝑢 = (𝑥 ∖ {𝑋}) → (𝑢 ∪ {𝑋}) = ((𝑥 ∖ {𝑋}) ∪ {𝑋}))
138137fveq2d 6195 . . . . . . . . . . . 12 (𝑢 = (𝑥 ∖ {𝑋}) → (𝐾‘(𝑢 ∪ {𝑋})) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
139138eqeq1d 2624 . . . . . . . . . . 11 (𝑢 = (𝑥 ∖ {𝑋}) → ((𝐾‘(𝑢 ∪ {𝑋})) = 𝐷 ↔ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
140139elrab 3363 . . . . . . . . . 10 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} ↔ ((𝑥 ∖ {𝑋}) ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∧ (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷))
141140simprbi 480 . . . . . . . . 9 ((𝑥 ∖ {𝑋}) ∈ {𝑢 ∈ ((𝑆 ∖ {𝑋})𝐶(𝑀 − 1)) ∣ (𝐾‘(𝑢 ∪ {𝑋})) = 𝐷} → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
142136, 141syl 17 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})) = 𝐷)
143122fveq2d 6195 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = (𝐾‘((𝑥 ∖ {𝑋}) ∪ {𝑋})))
144 simpl1r 1113 . . . . . . . 8 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝐸 = 𝐷)
145142, 143, 1443eqtr4d 2666 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝐾𝑥) = 𝐸)
146 ramub1.6 . . . . . . . . 9 (𝜑𝐾:(𝑆𝐶𝑀)⟶𝑅)
147 ffn 6045 . . . . . . . . 9 (𝐾:(𝑆𝐶𝑀)⟶𝑅𝐾 Fn (𝑆𝐶𝑀))
148146, 147syl 17 . . . . . . . 8 (𝜑𝐾 Fn (𝑆𝐶𝑀))
149 fniniseg 6338 . . . . . . . 8 (𝐾 Fn (𝑆𝐶𝑀) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
15066, 148, 1493syl 18 . . . . . . 7 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → (𝑥 ∈ (𝐾 “ {𝐸}) ↔ (𝑥 ∈ (𝑆𝐶𝑀) ∧ (𝐾𝑥) = 𝐸)))
15178, 145, 150mpbir2and 957 . . . . . 6 ((((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) ∧ ¬ 𝑥 ∈ 𝒫 𝑉) → 𝑥 ∈ (𝐾 “ {𝐸}))
15263, 151pm2.61dan 832 . . . . 5 (((𝜑𝐸 = 𝐷) ∧ 𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∧ (#‘𝑥) = 𝑀) → 𝑥 ∈ (𝐾 “ {𝐸}))
153152rabssdv 3682 . . . 4 ((𝜑𝐸 = 𝐷) → {𝑥 ∈ 𝒫 (𝑉 ∪ {𝑋}) ∣ (#‘𝑥) = 𝑀} ⊆ (𝐾 “ {𝐸}))
15452, 153eqsstrd 3639 . . 3 ((𝜑𝐸 = 𝐷) → ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
155 fveq2 6191 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (#‘𝑧) = (#‘(𝑉 ∪ {𝑋})))
156155breq2d 4665 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝐹𝐸) ≤ (#‘𝑧) ↔ (𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋}))))
157 oveq1 6657 . . . . . 6 (𝑧 = (𝑉 ∪ {𝑋}) → (𝑧𝐶𝑀) = ((𝑉 ∪ {𝑋})𝐶𝑀))
158157sseq1d 3632 . . . . 5 (𝑧 = (𝑉 ∪ {𝑋}) → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
159156, 158anbi12d 747 . . . 4 (𝑧 = (𝑉 ∪ {𝑋}) → (((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
160159rspcev 3309 . . 3 (((𝑉 ∪ {𝑋}) ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (#‘(𝑉 ∪ {𝑋})) ∧ ((𝑉 ∪ {𝑋})𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
16112, 43, 154, 160syl12anc 1324 . 2 ((𝜑𝐸 = 𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
162 elpw2g 4827 . . . . . 6 (𝑆 ∈ Fin → (𝑉 ∈ 𝒫 𝑆𝑉𝑆))
1638, 162syl 17 . . . . 5 (𝜑 → (𝑉 ∈ 𝒫 𝑆𝑉𝑆))
1644, 163mpbird 247 . . . 4 (𝜑𝑉 ∈ 𝒫 𝑆)
165164adantr 481 . . 3 ((𝜑𝐸𝐷) → 𝑉 ∈ 𝒫 𝑆)
166 ifnefalse 4098 . . . . 5 (𝐸𝐷 → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
167166adantl 482 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) = (𝐹𝐸))
16815adantr 481 . . . 4 ((𝜑𝐸𝐷) → if(𝐸 = 𝐷, ((𝐹𝐷) − 1), (𝐹𝐸)) ≤ (#‘𝑉))
169167, 168eqbrtrrd 4677 . . 3 ((𝜑𝐸𝐷) → (𝐹𝐸) ≤ (#‘𝑉))
17056adantr 481 . . 3 ((𝜑𝐸𝐷) → (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))
171 fveq2 6191 . . . . . 6 (𝑧 = 𝑉 → (#‘𝑧) = (#‘𝑉))
172171breq2d 4665 . . . . 5 (𝑧 = 𝑉 → ((𝐹𝐸) ≤ (#‘𝑧) ↔ (𝐹𝐸) ≤ (#‘𝑉)))
173 oveq1 6657 . . . . . 6 (𝑧 = 𝑉 → (𝑧𝐶𝑀) = (𝑉𝐶𝑀))
174173sseq1d 3632 . . . . 5 (𝑧 = 𝑉 → ((𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸}) ↔ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
175172, 174anbi12d 747 . . . 4 (𝑧 = 𝑉 → (((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})) ↔ ((𝐹𝐸) ≤ (#‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))))
176175rspcev 3309 . . 3 ((𝑉 ∈ 𝒫 𝑆 ∧ ((𝐹𝐸) ≤ (#‘𝑉) ∧ (𝑉𝐶𝑀) ⊆ (𝐾 “ {𝐸}))) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
177165, 169, 170, 176syl12anc 1324 . 2 ((𝜑𝐸𝐷) → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
178161, 177pm2.61dane 2881 1 (𝜑 → ∃𝑧 ∈ 𝒫 𝑆((𝐹𝐸) ≤ (#‘𝑧) ∧ (𝑧𝐶𝑀) ⊆ (𝐾 “ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  wss 3574  ifcif 4086  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Fincfn 7955  cc 9934  cr 9935  1c1 9937   + caddc 9939  cle 10075  cmin 10266  cn 11020  0cn0 11292  #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  ramub1lem2  15731
  Copyright terms: Public domain W3C validator