MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onminsb Structured version   Visualization version   GIF version

Theorem onminsb 6999
Description: If a property is true for some ordinal number, it is true for a minimal ordinal number. This version uses implicit substitution. Theorem Schema 62 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypotheses
Ref Expression
onminsb.1 𝑥𝜓
onminsb.2 (𝑥 = {𝑥 ∈ On ∣ 𝜑} → (𝜑𝜓))
Assertion
Ref Expression
onminsb (∃𝑥 ∈ On 𝜑𝜓)

Proof of Theorem onminsb
StepHypRef Expression
1 rabn0 3958 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ On 𝜑)
2 ssrab2 3687 . . . 4 {𝑥 ∈ On ∣ 𝜑} ⊆ On
3 onint 6995 . . . 4 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ {𝑥 ∈ On ∣ 𝜑} ≠ ∅) → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
42, 3mpan 706 . . 3 ({𝑥 ∈ On ∣ 𝜑} ≠ ∅ → {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
51, 4sylbir 225 . 2 (∃𝑥 ∈ On 𝜑 {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑})
6 nfrab1 3122 . . . . 5 𝑥{𝑥 ∈ On ∣ 𝜑}
76nfint 4486 . . . 4 𝑥 {𝑥 ∈ On ∣ 𝜑}
8 nfcv 2764 . . . 4 𝑥On
9 onminsb.1 . . . 4 𝑥𝜓
10 onminsb.2 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝜑} → (𝜑𝜓))
117, 8, 9, 10elrabf 3360 . . 3 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} ↔ ( {𝑥 ∈ On ∣ 𝜑} ∈ On ∧ 𝜓))
1211simprbi 480 . 2 ( {𝑥 ∈ On ∣ 𝜑} ∈ {𝑥 ∈ On ∣ 𝜑} → 𝜓)
135, 12syl 17 1 (∃𝑥 ∈ On 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wnf 1708  wcel 1990  wne 2794  wrex 2913  {crab 2916  wss 3574  c0 3915   cint 4475  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  oawordeulem  7634  rankidb  8663  cardmin2  8824  cardaleph  8912  cardmin  9386
  Copyright terms: Public domain W3C validator