MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardmin Structured version   Visualization version   GIF version

Theorem cardmin 9386
Description: The smallest ordinal that strictly dominates a set is a cardinal. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
cardmin (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem cardmin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 numthcor 9316 . . 3 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴𝑥)
2 onintrab2 7002 . . 3 (∃𝑥 ∈ On 𝐴𝑥 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
31, 2sylib 208 . 2 (𝐴𝑉 {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On)
4 onelon 5748 . . . . . . . . 9 (( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 ∈ On)
54ex 450 . . . . . . . 8 ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
63, 5syl 17 . . . . . . 7 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 ∈ On))
7 breq2 4657 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
87onnminsb 7004 . . . . . . 7 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
96, 8syli 39 . . . . . 6 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → ¬ 𝐴𝑦))
10 vex 3203 . . . . . . 7 𝑦 ∈ V
11 domtri 9378 . . . . . . 7 ((𝑦 ∈ V ∧ 𝐴𝑉) → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
1210, 11mpan 706 . . . . . 6 (𝐴𝑉 → (𝑦𝐴 ↔ ¬ 𝐴𝑦))
139, 12sylibrd 249 . . . . 5 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦𝐴))
14 nfcv 2764 . . . . . . . 8 𝑥𝐴
15 nfcv 2764 . . . . . . . 8 𝑥
16 nfrab1 3122 . . . . . . . . 9 𝑥{𝑥 ∈ On ∣ 𝐴𝑥}
1716nfint 4486 . . . . . . . 8 𝑥 {𝑥 ∈ On ∣ 𝐴𝑥}
1814, 15, 17nfbr 4699 . . . . . . 7 𝑥 𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}
19 breq2 4657 . . . . . . 7 (𝑥 = {𝑥 ∈ On ∣ 𝐴𝑥} → (𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}))
2018, 19onminsb 6999 . . . . . 6 (∃𝑥 ∈ On 𝐴𝑥𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
211, 20syl 17 . . . . 5 (𝐴𝑉𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})
2213, 21jctird 567 . . . 4 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → (𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥})))
23 domsdomtr 8095 . . . 4 ((𝑦𝐴𝐴 {𝑥 ∈ On ∣ 𝐴𝑥}) → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
2422, 23syl6 35 . . 3 (𝐴𝑉 → (𝑦 {𝑥 ∈ On ∣ 𝐴𝑥} → 𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
2524ralrimiv 2965 . 2 (𝐴𝑉 → ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥})
26 iscard 8801 . 2 ((card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ( {𝑥 ∈ On ∣ 𝐴𝑥} ∈ On ∧ ∀𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}𝑦 {𝑥 ∈ On ∣ 𝐴𝑥}))
273, 25, 26sylanbrc 698 1 (𝐴𝑉 → (card‘ {𝑥 ∈ On ∣ 𝐴𝑥}) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200   cint 4475   class class class wbr 4653  Oncon0 5723  cfv 5888  cdom 7953  csdm 7954  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-ac 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator