MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankidb Structured version   Visualization version   GIF version

Theorem rankidb 8663
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankidb (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))

Proof of Theorem rankidb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rankwflemb 8656 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2 nfcv 2764 . . . . . 6 𝑥𝑅1
3 nfrab1 3122 . . . . . . . 8 𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
43nfint 4486 . . . . . . 7 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
54nfsuc 5796 . . . . . 6 𝑥 suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
62, 5nffv 6198 . . . . 5 𝑥(𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
76nfel2 2781 . . . 4 𝑥 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
8 suceq 5790 . . . . . 6 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
98fveq2d 6195 . . . . 5 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
109eleq2d 2687 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})))
117, 10onminsb 6999 . . 3 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
121, 11sylbi 207 . 2 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
13 rankvalb 8660 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
14 suceq 5790 . . . 4 ((rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1513, 14syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1615fveq2d 6195 . 2 (𝐴 (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
1712, 16eleqtrrd 2704 1 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wrex 2913  {crab 2916   cuni 4436   cint 4475  cima 5117  Oncon0 5723  suc csuc 5725  cfv 5888  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-rank 8628
This theorem is referenced by:  rankdmr1  8664  rankr1ag  8665  sswf  8671  uniwf  8682  rankonidlem  8691  rankid  8696  dfac12lem2  8966  aomclem4  37627
  Copyright terms: Public domain W3C validator