![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsup | Structured version Visualization version GIF version |
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.) |
Ref | Expression |
---|---|
nfsup.1 | ⊢ Ⅎ𝑥𝐴 |
nfsup.2 | ⊢ Ⅎ𝑥𝐵 |
nfsup.3 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfsup | ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsup2 8350 | . 2 ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) | |
2 | nfsup.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | nfsup.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝑅 | |
4 | 3 | nfcnv 5301 | . . . . . 6 ⊢ Ⅎ𝑥◡𝑅 |
5 | nfsup.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfima 5474 | . . . . 5 ⊢ Ⅎ𝑥(◡𝑅 “ 𝐴) |
7 | 2, 6 | nfdif 3731 | . . . . . 6 ⊢ Ⅎ𝑥(𝐵 ∖ (◡𝑅 “ 𝐴)) |
8 | 3, 7 | nfima 5474 | . . . . 5 ⊢ Ⅎ𝑥(𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))) |
9 | 6, 8 | nfun 3769 | . . . 4 ⊢ Ⅎ𝑥((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴)))) |
10 | 2, 9 | nfdif 3731 | . . 3 ⊢ Ⅎ𝑥(𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
11 | 10 | nfuni 4442 | . 2 ⊢ Ⅎ𝑥∪ (𝐵 ∖ ((◡𝑅 “ 𝐴) ∪ (𝑅 “ (𝐵 ∖ (◡𝑅 “ 𝐴))))) |
12 | 1, 11 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑥sup(𝐴, 𝐵, 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2751 ∖ cdif 3571 ∪ cun 3572 ∪ cuni 4436 ◡ccnv 5113 “ cima 5117 supcsup 8346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-sup 8348 |
This theorem is referenced by: nfinf 8388 itg2cnlem1 23528 esum2d 30155 nfwlim 31768 totbndbnd 33588 aomclem8 37631 binomcxplemdvbinom 38552 binomcxplemdvsum 38554 binomcxplemnotnn0 38555 ssfiunibd 39523 uzub 39658 limsupubuz 39945 fourierdlem20 40344 fourierdlem31 40355 fourierdlem79 40402 sge0ltfirp 40617 pimdecfgtioc 40925 decsmflem 40974 smfsup 41020 smfsupxr 41022 smflimsup 41034 |
Copyright terms: Public domain | W3C validator |