| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem79.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 2 | | fourierdlem79.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | fourierdlem79.p |
. . . . . . . . . 10
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 4 | 3 | fourierdlem2 40326 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 5 | 2, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 1, 5 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 7 | 6 | simpld 475 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
| 8 | | elmapi 7879 |
. . . . . 6
⊢ (𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 10 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑄:(0...𝑀)⟶ℝ) |
| 11 | | fourierdlem79.t |
. . . . . . . . 9
⊢ 𝑇 = (𝐵 − 𝐴) |
| 12 | | fourierdlem79.e |
. . . . . . . . 9
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
| 13 | | fourierdlem79.l |
. . . . . . . . 9
⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
| 14 | | fourierdlem79.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) |
| 15 | 3, 2, 1, 11, 12, 13, 14 | fourierdlem37 40361 |
. . . . . . . 8
⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}))) |
| 16 | 15 | simpld 475 |
. . . . . . 7
⊢ (𝜑 → 𝐼:ℝ⟶(0..^𝑀)) |
| 17 | | fzossfz 12488 |
. . . . . . . 8
⊢
(0..^𝑀) ⊆
(0...𝑀) |
| 18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0..^𝑀) ⊆ (0...𝑀)) |
| 19 | 16, 18 | fssd 6057 |
. . . . . 6
⊢ (𝜑 → 𝐼:ℝ⟶(0...𝑀)) |
| 20 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐼:ℝ⟶(0...𝑀)) |
| 21 | | fourierdlem79.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 22 | | fourierdlem79.d |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 23 | | fourierdlem79.cltd |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 < 𝐷) |
| 24 | | fourierdlem79.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 25 | | fourierdlem79.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
| 26 | | fourierdlem79.n |
. . . . . . . . . . . . 13
⊢ 𝑁 = ((#‘𝐻) − 1) |
| 27 | | fourierdlem79.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
| 28 | 11, 3, 2, 1, 21, 22, 23, 24, 25, 26, 27 | fourierdlem54 40377 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) |
| 29 | 28 | simpld 475 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
| 30 | 29 | simprd 479 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
| 31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆 ∈ (𝑂‘𝑁)) |
| 32 | 29 | simpld 475 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 33 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
| 34 | 24 | fourierdlem2 40326 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑𝑚
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
| 36 | 31, 35 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆 ∈ (ℝ ↑𝑚
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
| 37 | 36 | simpld 475 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆 ∈ (ℝ ↑𝑚
(0...𝑁))) |
| 38 | | elmapi 7879 |
. . . . . . 7
⊢ (𝑆 ∈ (ℝ
↑𝑚 (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ) |
| 39 | 37, 38 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶ℝ) |
| 40 | | elfzofz 12485 |
. . . . . . 7
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
| 41 | 40 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁)) |
| 42 | 39, 41 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℝ) |
| 43 | 20, 42 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ (0...𝑀)) |
| 44 | 10, 43 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) ∈ ℝ) |
| 45 | 44 | rexrd 10089 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) ∈
ℝ*) |
| 46 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐼:ℝ⟶(0..^𝑀)) |
| 47 | 46, 42 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀)) |
| 48 | | fzofzp1 12565 |
. . . . 5
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0...𝑀)) |
| 49 | 47, 48 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0...𝑀)) |
| 50 | 10, 49 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈ ℝ) |
| 51 | 50 | rexrd 10089 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈
ℝ*) |
| 52 | 14 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ))) |
| 53 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑆‘𝑗) → (𝐸‘𝑥) = (𝐸‘(𝑆‘𝑗))) |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = (𝑆‘𝑗) → (𝐿‘(𝐸‘𝑥)) = (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 55 | 54 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑥 = (𝑆‘𝑗) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥)) ↔ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 56 | 55 | rabbidv 3189 |
. . . . . . 7
⊢ (𝑥 = (𝑆‘𝑗) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) |
| 57 | 56 | supeq1d 8352 |
. . . . . 6
⊢ (𝑥 = (𝑆‘𝑗) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 58 | 57 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 = (𝑆‘𝑗)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 59 | | ltso 10118 |
. . . . . . 7
⊢ < Or
ℝ |
| 60 | 59 | supex 8369 |
. . . . . 6
⊢
sup({𝑖 ∈
(0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈
V |
| 61 | 60 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈
V) |
| 62 | 52, 58, 42, 61 | fvmptd 6288 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 63 | 62 | fveq2d 6195 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) = (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ))) |
| 64 | | simpl 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝜑) |
| 65 | 64, 42 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝜑 ∧ (𝑆‘𝑗) ∈ ℝ)) |
| 66 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑥 = (𝑆‘𝑗) → (𝑥 ∈ ℝ ↔ (𝑆‘𝑗) ∈ ℝ)) |
| 67 | 66 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑥 = (𝑆‘𝑗) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑆‘𝑗) ∈ ℝ))) |
| 68 | 57, 56 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑥 = (𝑆‘𝑗) → (sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ↔ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))})) |
| 69 | 67, 68 | imbi12d 334 |
. . . . . . 7
⊢ (𝑥 = (𝑆‘𝑗) → (((𝜑 ∧ 𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}) ↔ ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}))) |
| 70 | 15 | simprd 479 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))})) |
| 71 | 70 | imp 445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}) |
| 72 | 69, 71 | vtoclg 3266 |
. . . . . 6
⊢ ((𝑆‘𝑗) ∈ ℝ → ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))})) |
| 73 | 42, 65, 72 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) |
| 74 | | nfrab1 3122 |
. . . . . . 7
⊢
Ⅎ𝑖{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} |
| 75 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑖ℝ |
| 76 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑖
< |
| 77 | 74, 75, 76 | nfsup 8357 |
. . . . . 6
⊢
Ⅎ𝑖sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) |
| 78 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑖(0..^𝑀) |
| 79 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑖𝑄 |
| 80 | 79, 77 | nffv 6198 |
. . . . . . 7
⊢
Ⅎ𝑖(𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 81 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑖
≤ |
| 82 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑖(𝐿‘(𝐸‘(𝑆‘𝑗))) |
| 83 | 80, 81, 82 | nfbr 4699 |
. . . . . 6
⊢
Ⅎ𝑖(𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) |
| 84 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑖 = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) → (𝑄‘𝑖) = (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ))) |
| 85 | 84 | breq1d 4663 |
. . . . . 6
⊢ (𝑖 = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ↔ (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 86 | 77, 78, 83, 85 | elrabf 3360 |
. . . . 5
⊢
(sup({𝑖 ∈
(0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ↔ (sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ (0..^𝑀) ∧ (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 87 | 73, 86 | sylib 208 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ (0..^𝑀) ∧ (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 88 | 87 | simprd 479 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 89 | 63, 88 | eqbrtrd 4675 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 90 | 2 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑀 ∈ ℕ) |
| 91 | 1 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑄 ∈ (𝑃‘𝑀)) |
| 92 | 21 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐶 ∈ ℝ) |
| 93 | 22 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐷 ∈ ℝ) |
| 94 | 23 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐶 < 𝐷) |
| 95 | | 0le1 10551 |
. . . . . . . 8
⊢ 0 ≤
1 |
| 96 | 95 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 1) |
| 97 | 2 | nnge1d 11063 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ 𝑀) |
| 98 | | 1zzd 11408 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 99 | | 0zd 11389 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
| 100 | 2 | nnzd 11481 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 101 | | elfz 12332 |
. . . . . . . 8
⊢ ((1
∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤
𝑀))) |
| 102 | 98, 99, 100, 101 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤
𝑀))) |
| 103 | 96, 97, 102 | mpbir2and 957 |
. . . . . 6
⊢ (𝜑 → 1 ∈ (0...𝑀)) |
| 104 | 103 | ad2antrr 762 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 1 ∈ (0...𝑀)) |
| 105 | | simplr 792 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑗 ∈ (0..^𝑁)) |
| 106 | | fourierdlem79.z |
. . . . . . . 8
⊢ 𝑍 = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) |
| 107 | | fzofzp1 12565 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
| 108 | 107 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁)) |
| 109 | 39, 108 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 110 | 109, 42 | resubcld 10458 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ∈ ℝ) |
| 111 | 110 | rehalfcld 11279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈ ℝ) |
| 112 | 9, 103 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘1) ∈ ℝ) |
| 113 | 3, 2, 1 | fourierdlem11 40335 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
| 114 | 113 | simp1d 1073 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 115 | 112, 114 | resubcld 10458 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘1) − 𝐴) ∈ ℝ) |
| 116 | 115 | rehalfcld 11279 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ∈ ℝ) |
| 117 | 116 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑄‘1) − 𝐴) / 2) ∈ ℝ) |
| 118 | 111, 117 | ifcld 4131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ∈ ℝ) |
| 119 | 42, 118 | readdcld 10069 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) ∈ ℝ) |
| 120 | 106, 119 | syl5eqel 2705 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ∈ ℝ) |
| 121 | | 2re 11090 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
| 122 | 121 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 2 ∈ ℝ) |
| 123 | | elfzoelz 12470 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) |
| 124 | 123 | zred 11482 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℝ) |
| 125 | 124 | ltp1d 10954 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 < (𝑗 + 1)) |
| 126 | 125 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 < (𝑗 + 1)) |
| 127 | 28 | simprd 479 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝐻)) |
| 128 | 127 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝐻)) |
| 129 | | isorel 6576 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝑗 + 1) ∈ (0...𝑁))) → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
| 130 | 128, 41, 108, 129 | syl12anc 1324 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
| 131 | 126, 130 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 132 | 42, 109 | posdifd 10614 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) < (𝑆‘(𝑗 + 1)) ↔ 0 < ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)))) |
| 133 | 131, 132 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) |
| 134 | | 2pos 11112 |
. . . . . . . . . . . . . 14
⊢ 0 <
2 |
| 135 | 134 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < 2) |
| 136 | 110, 122,
133, 135 | divgt0d 10959 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 137 | 111, 136 | elrpd 11869 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈
ℝ+) |
| 138 | 121 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℝ) |
| 139 | 2 | nngt0d 11064 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 < 𝑀) |
| 140 | | fzolb 12476 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 < 𝑀)) |
| 141 | 99, 100, 139, 140 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
| 142 | | 0re 10040 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
| 143 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀))) |
| 144 | 143 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 0 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀)))) |
| 145 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
| 146 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
| 147 | 146 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1))) |
| 148 | 145, 147 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 0 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1)))) |
| 149 | 144, 148 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))) |
| 150 | 6 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
| 151 | 150 | simprd 479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 152 | 151 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 153 | 149, 152 | vtoclg 3266 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
(𝑄‘0) < (𝑄‘(0 +
1)))) |
| 154 | 142, 153 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))) |
| 155 | 141, 154 | mpdan 702 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1))) |
| 156 | 150 | simpld 475 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 157 | 156 | simpld 475 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 158 | | 0p1e1 11132 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
| 159 | 158 | fveq2i 6194 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄‘(0 + 1)) = (𝑄‘1) |
| 160 | 159 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1)) |
| 161 | 155, 157,
160 | 3brtr3d 4684 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 < (𝑄‘1)) |
| 162 | 114, 112 | posdifd 10614 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 < (𝑄‘1) ↔ 0 < ((𝑄‘1) − 𝐴))) |
| 163 | 161, 162 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < ((𝑄‘1) − 𝐴)) |
| 164 | 134 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 2) |
| 165 | 115, 138,
163, 164 | divgt0d 10959 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (((𝑄‘1) − 𝐴) / 2)) |
| 166 | 116, 165 | elrpd 11869 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ∈
ℝ+) |
| 167 | 166 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑄‘1) − 𝐴) / 2) ∈
ℝ+) |
| 168 | 137, 167 | ifcld 4131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ∈
ℝ+) |
| 169 | 42, 168 | ltaddrpd 11905 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
| 170 | 42, 119, 169 | ltled 10185 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ≤ ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
| 171 | 170, 106 | syl6breqr 4695 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ≤ 𝑍) |
| 172 | 42, 111 | readdcld 10069 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) ∈ ℝ) |
| 173 | | iftrue 4092 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 174 | 173 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 175 | 111 | leidd 10594 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 176 | 175 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 177 | 174, 176 | eqbrtrd 4675 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 178 | | iffalse 4095 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) − 𝐴) / 2)) |
| 179 | 178 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) − 𝐴) / 2)) |
| 180 | 115 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑄‘1) − 𝐴) ∈ ℝ) |
| 181 | 110 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ∈ ℝ) |
| 182 | | 2rp 11837 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ+ |
| 183 | 182 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → 2 ∈
ℝ+) |
| 184 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) |
| 185 | 180, 181,
184 | nltled 10187 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑄‘1) − 𝐴) ≤ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) |
| 186 | 180, 181,
183, 185 | lediv1dd 11930 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑄‘1) − 𝐴) / 2) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 187 | 179, 186 | eqbrtrd 4675 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 188 | 177, 187 | pm2.61dan 832 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 189 | 118, 111,
42, 188 | leadd2dd 10642 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) ≤ ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
| 190 | 42 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℂ) |
| 191 | 109 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℂ) |
| 192 | 190, 191 | addcomd 10238 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) = ((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗))) |
| 193 | 192 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) = (((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2)) |
| 194 | 193 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
| 195 | | halfaddsub 11265 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆‘(𝑗 + 1)) ∈ ℂ ∧ (𝑆‘𝑗) ∈ ℂ) → (((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘(𝑗 + 1)) ∧ ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗))) |
| 196 | 191, 190,
195 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘(𝑗 + 1)) ∧ ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗))) |
| 197 | 196 | simprd 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗)) |
| 198 | 194, 197 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗)) |
| 199 | 190, 191 | addcld 10059 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) ∈ ℂ) |
| 200 | 199 | halfcld 11277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) ∈ ℂ) |
| 201 | 111 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈ ℂ) |
| 202 | 200, 201,
190 | subsub23d 39499 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗) ↔ ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (𝑆‘𝑗)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
| 203 | 198, 202 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (𝑆‘𝑗)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
| 204 | 200, 190,
201 | subaddd 10410 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (𝑆‘𝑗)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ↔ ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2))) |
| 205 | 203, 204 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2)) |
| 206 | | avglt2 11271 |
. . . . . . . . . . . 12
⊢ (((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ) → ((𝑆‘𝑗) < (𝑆‘(𝑗 + 1)) ↔ (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) < (𝑆‘(𝑗 + 1)))) |
| 207 | 42, 109, 206 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) < (𝑆‘(𝑗 + 1)) ↔ (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) < (𝑆‘(𝑗 + 1)))) |
| 208 | 131, 207 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) < (𝑆‘(𝑗 + 1))) |
| 209 | 205, 208 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) < (𝑆‘(𝑗 + 1))) |
| 210 | 119, 172,
109, 189, 209 | lelttrd 10195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑆‘(𝑗 + 1))) |
| 211 | 106, 210 | syl5eqbr 4688 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 < (𝑆‘(𝑗 + 1))) |
| 212 | 109 | rexrd 10089 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈
ℝ*) |
| 213 | | elico2 12237 |
. . . . . . . 8
⊢ (((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ*) →
(𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) ≤ 𝑍 ∧ 𝑍 < (𝑆‘(𝑗 + 1))))) |
| 214 | 42, 212, 213 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) ≤ 𝑍 ∧ 𝑍 < (𝑆‘(𝑗 + 1))))) |
| 215 | 120, 171,
211, 214 | mpbir3and 1245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
| 216 | 215 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
| 217 | 114 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐴 ∈ ℝ) |
| 218 | 113 | simp2d 1074 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 219 | 218 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐵 ∈ ℝ) |
| 220 | 113 | simp3d 1075 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) |
| 221 | 220 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐴 < 𝐵) |
| 222 | 42 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝑆‘𝑗) ∈ ℝ) |
| 223 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) = 𝐵) |
| 224 | 169, 106 | syl6breqr 4695 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < 𝑍) |
| 225 | 218, 114 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 226 | 11, 225 | syl5eqel 2705 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 227 | 226 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑇 ∈ ℝ) |
| 228 | 111 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈ ℝ) |
| 229 | 116 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑄‘1) − 𝐴) / 2) ∈ ℝ) |
| 230 | 110 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ∈ ℝ) |
| 231 | 115 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑄‘1) − 𝐴) ∈ ℝ) |
| 232 | 182 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → 2 ∈
ℝ+) |
| 233 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) |
| 234 | 230, 231,
232, 233 | ltdiv1dd 11929 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) < (((𝑄‘1) − 𝐴) / 2)) |
| 235 | 228, 229,
234 | ltled 10185 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 236 | 174, 235 | eqbrtrd 4675 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 237 | 178 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) − 𝐴) / 2)) |
| 238 | 116 | leidd 10594 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 239 | 238 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑄‘1) − 𝐴) / 2) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 240 | 237, 239 | eqbrtrd 4675 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 241 | 240 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 242 | 236, 241 | pm2.61dan 832 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
| 243 | 225 | rehalfcld 11279 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝐴) / 2) ∈ ℝ) |
| 244 | 182 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ∈
ℝ+) |
| 245 | 114 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 246 | 218 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 247 | 3, 2, 1 | fourierdlem15 40339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| 248 | 247, 103 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑄‘1) ∈ (𝐴[,]𝐵)) |
| 249 | | iccleub 12229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑄‘1) ∈ (𝐴[,]𝐵)) → (𝑄‘1) ≤ 𝐵) |
| 250 | 245, 246,
248, 249 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑄‘1) ≤ 𝐵) |
| 251 | 112, 218,
114, 250 | lesub1dd 10643 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘1) − 𝐴) ≤ (𝐵 − 𝐴)) |
| 252 | 115, 225,
244, 251 | lediv1dd 11930 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ≤ ((𝐵 − 𝐴) / 2)) |
| 253 | 11 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 − 𝐴) = 𝑇 |
| 254 | 253 | oveq1i 6660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 − 𝐴) / 2) = (𝑇 / 2) |
| 255 | 114, 218 | posdifd 10614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 256 | 220, 255 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 257 | 256, 11 | syl6breqr 4695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 < 𝑇) |
| 258 | 226, 257 | elrpd 11869 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
| 259 | | rphalflt 11860 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ ℝ+
→ (𝑇 / 2) < 𝑇) |
| 260 | 258, 259 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑇 / 2) < 𝑇) |
| 261 | 254, 260 | syl5eqbr 4688 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝐴) / 2) < 𝑇) |
| 262 | 116, 243,
226, 252, 261 | lelttrd 10195 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) < 𝑇) |
| 263 | 116, 226,
262 | ltled 10185 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ≤ 𝑇) |
| 264 | 263 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑄‘1) − 𝐴) / 2) ≤ 𝑇) |
| 265 | 118, 117,
227, 242, 264 | letrd 10194 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ 𝑇) |
| 266 | 118, 227,
42, 265 | leadd2dd 10642 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) ≤ ((𝑆‘𝑗) + 𝑇)) |
| 267 | 106, 266 | syl5eqbr 4688 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ≤ ((𝑆‘𝑗) + 𝑇)) |
| 268 | 42 | rexrd 10089 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈
ℝ*) |
| 269 | 42, 227 | readdcld 10069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + 𝑇) ∈ ℝ) |
| 270 | | elioc2 12236 |
. . . . . . . . . . 11
⊢ (((𝑆‘𝑗) ∈ ℝ* ∧ ((𝑆‘𝑗) + 𝑇) ∈ ℝ) → (𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇)) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) < 𝑍 ∧ 𝑍 ≤ ((𝑆‘𝑗) + 𝑇)))) |
| 271 | 268, 269,
270 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇)) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) < 𝑍 ∧ 𝑍 ≤ ((𝑆‘𝑗) + 𝑇)))) |
| 272 | 120, 224,
267, 271 | mpbir3and 1245 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇))) |
| 273 | 272 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇))) |
| 274 | 217, 219,
221, 11, 12, 222, 223, 273 | fourierdlem26 40350 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘𝑍) = (𝐴 + (𝑍 − (𝑆‘𝑗)))) |
| 275 | 106 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
| 276 | 275 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑍 − (𝑆‘𝑗)) = (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗))) |
| 277 | 276 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (𝑍 − (𝑆‘𝑗))) = (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗)))) |
| 278 | 277 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐴 + (𝑍 − (𝑆‘𝑗))) = (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗)))) |
| 279 | 118 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ∈ ℂ) |
| 280 | 190, 279 | pncan2d 10394 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗)) = if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) |
| 281 | 280 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗))) = (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
| 282 | 281 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗))) = (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
| 283 | 274, 278,
282 | 3eqtrd 2660 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘𝑍) = (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
| 284 | 173 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
| 285 | 284 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
| 286 | 114 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ) |
| 287 | 286, 111 | readdcld 10069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) ∈ ℝ) |
| 288 | 287 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) ∈ ℝ) |
| 289 | 286, 117 | readdcld 10069 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) ∈ ℝ) |
| 290 | 289 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) ∈ ℝ) |
| 291 | 112 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝑄‘1) ∈ ℝ) |
| 292 | 114 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → 𝐴 ∈ ℝ) |
| 293 | 228, 229,
292, 234 | ltadd2dd 10196 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) < (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
| 294 | 112 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘1) ∈ ℂ) |
| 295 | 114 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 296 | | halfaddsub 11265 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘1) ∈ ℂ ∧
𝐴 ∈ ℂ) →
(((((𝑄‘1) + 𝐴) / 2) + (((𝑄‘1) − 𝐴) / 2)) = (𝑄‘1) ∧ ((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) = 𝐴)) |
| 297 | 294, 295,
296 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((((𝑄‘1) + 𝐴) / 2) + (((𝑄‘1) − 𝐴) / 2)) = (𝑄‘1) ∧ ((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) = 𝐴)) |
| 298 | 297 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) = 𝐴) |
| 299 | 298 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) + (((𝑄‘1) − 𝐴) / 2)) = (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
| 300 | 112, 114 | readdcld 10069 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑄‘1) + 𝐴) ∈ ℝ) |
| 301 | 300 | rehalfcld 11279 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) ∈ ℝ) |
| 302 | 301 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) ∈ ℂ) |
| 303 | 116 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ∈ ℂ) |
| 304 | 302, 303 | npcand 10396 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) + (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) + 𝐴) / 2)) |
| 305 | 299, 304 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) + 𝐴) / 2)) |
| 306 | 112, 112 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑄‘1) + (𝑄‘1)) ∈ ℝ) |
| 307 | 114, 112,
112, 161 | ltadd2dd 10196 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑄‘1) + 𝐴) < ((𝑄‘1) + (𝑄‘1))) |
| 308 | 300, 306,
244, 307 | ltdiv1dd 11929 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) < (((𝑄‘1) + (𝑄‘1)) / 2)) |
| 309 | 294 | 2timesd 11275 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · (𝑄‘1)) = ((𝑄‘1) + (𝑄‘1))) |
| 310 | 309 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘1) + (𝑄‘1)) = (2 · (𝑄‘1))) |
| 311 | 310 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) + (𝑄‘1)) / 2) = ((2 · (𝑄‘1)) /
2)) |
| 312 | | 2cnd 11093 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ∈
ℂ) |
| 313 | | 2ne0 11113 |
. . . . . . . . . . . . . . . 16
⊢ 2 ≠
0 |
| 314 | 313 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ≠ 0) |
| 315 | 294, 312,
314 | divcan3d 10806 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 · (𝑄‘1)) / 2) = (𝑄‘1)) |
| 316 | 311, 315 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑄‘1) + (𝑄‘1)) / 2) = (𝑄‘1)) |
| 317 | 308, 316 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) < (𝑄‘1)) |
| 318 | 305, 317 | eqbrtrd 4675 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) < (𝑄‘1)) |
| 319 | 318 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) < (𝑄‘1)) |
| 320 | 288, 290,
291, 293, 319 | lttrd 10198 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) < (𝑄‘1)) |
| 321 | 285, 320 | eqbrtrd 4675 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
| 322 | 178 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (¬
((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
| 323 | 322 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
| 324 | 318 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) < (𝑄‘1)) |
| 325 | 323, 324 | eqbrtrd 4675 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
| 326 | 321, 325 | pm2.61dan 832 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
| 327 | 326 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
| 328 | 283, 327 | eqbrtrd 4675 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘𝑍) < (𝑄‘1)) |
| 329 | | eqid 2622 |
. . . . 5
⊢ ((𝑄‘1) − ((𝐸‘𝑍) − 𝑍)) = ((𝑄‘1) − ((𝐸‘𝑍) − 𝑍)) |
| 330 | 11, 3, 90, 91, 92, 93, 94, 24, 25, 26, 27, 12, 104, 105, 216, 328, 329 | fourierdlem63 40386 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘1)) |
| 331 | 14 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ))) |
| 332 | 57 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ 𝑥 = (𝑆‘𝑗)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 333 | 60 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈
V) |
| 334 | 331, 332,
222, 333 | fvmptd 6288 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐼‘(𝑆‘𝑗)) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 335 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ ((𝐸‘(𝑆‘𝑗)) = 𝐵 → (𝐿‘(𝐸‘(𝑆‘𝑗))) = (𝐿‘𝐵)) |
| 336 | 13 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))) |
| 337 | | iftrue 4092 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → if(𝑦 = 𝐵, 𝐴, 𝑦) = 𝐴) |
| 338 | 337 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → if(𝑦 = 𝐵, 𝐴, 𝑦) = 𝐴) |
| 339 | | ubioc1 12227 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → 𝐵 ∈ (𝐴(,]𝐵)) |
| 340 | 245, 246,
220, 339 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝐴(,]𝐵)) |
| 341 | 336, 338,
340, 114 | fvmptd 6288 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿‘𝐵) = 𝐴) |
| 342 | 335, 341 | sylan9eqr 2678 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐿‘(𝐸‘(𝑆‘𝑗))) = 𝐴) |
| 343 | 342 | breq2d 4665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ↔ (𝑄‘𝑖) ≤ 𝐴)) |
| 344 | 343 | rabbidv 3189 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) |
| 345 | 344 | supeq1d 8352 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < )) |
| 346 | 345 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < )) |
| 347 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝜑) |
| 348 | | elrabi 3359 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} → 𝑗 ∈ (0..^𝑀)) |
| 349 | 348 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝑗 ∈ (0..^𝑀)) |
| 350 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 351 | 350 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) ≤ 𝐴 ↔ (𝑄‘𝑗) ≤ 𝐴)) |
| 352 | 351 | elrab 3363 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ↔ (𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴)) |
| 353 | 352 | simprbi 480 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} → (𝑄‘𝑗) ≤ 𝐴) |
| 354 | 353 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → (𝑄‘𝑗) ≤ 𝐴) |
| 355 | | simp3 1063 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → (𝑄‘𝑗) ≤ 𝐴) |
| 356 | 114 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝐴 ∈ ℝ) |
| 357 | 112 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝑄‘1) ∈ ℝ) |
| 358 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 359 | 18 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 360 | 358, 359 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 361 | 360 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝑄‘𝑗) ∈ ℝ) |
| 362 | 161 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝐴 < (𝑄‘1)) |
| 363 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 1 ∈
ℤ) |
| 364 | | elfzoelz 12470 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
| 365 | 364 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝑗 ∈ ℤ) |
| 366 | | 1e0p1 11552 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 = (0 +
1) |
| 367 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → ¬ 𝑗 ≤ 0) |
| 368 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 0 ∈
ℝ) |
| 369 | 365 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝑗 ∈ ℝ) |
| 370 | 368, 369 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (0 < 𝑗 ↔ ¬ 𝑗 ≤ 0)) |
| 371 | 367, 370 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 0 < 𝑗) |
| 372 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 0 ∈
ℤ) |
| 373 | | zltp1le 11427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0
∈ ℤ ∧ 𝑗
∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗)) |
| 374 | 372, 365,
373 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗)) |
| 375 | 371, 374 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (0 + 1) ≤ 𝑗) |
| 376 | 366, 375 | syl5eqbr 4688 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 1 ≤ 𝑗) |
| 377 | | eluz2 11693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤
𝑗)) |
| 378 | 363, 365,
376, 377 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝑗 ∈
(ℤ≥‘1)) |
| 379 | 9 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑄:(0...𝑀)⟶ℝ) |
| 380 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...𝑗) → 0 ∈ ℝ) |
| 381 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℤ) |
| 382 | 381 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℝ) |
| 383 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 1 ∈ ℝ) |
| 384 | | 0lt1 10550 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 <
1 |
| 385 | 384 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 0 < 1) |
| 386 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 1 ≤ 𝑙) |
| 387 | 380, 383,
382, 385, 386 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...𝑗) → 0 < 𝑙) |
| 388 | 380, 382,
387 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑙 ∈ (1...𝑗) → 0 ≤ 𝑙) |
| 389 | 388 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 0 ≤ 𝑙) |
| 390 | 382 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ) |
| 391 | 100 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 392 | 391 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑀 ∈ ℝ) |
| 393 | 364 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
| 394 | 393 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ) |
| 395 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 𝑙 ≤ 𝑗) |
| 396 | 395 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ 𝑗) |
| 397 | | elfzolt2 12479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀) |
| 398 | 397 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 < 𝑀) |
| 399 | 390, 394,
392, 396, 398 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 < 𝑀) |
| 400 | 390, 392,
399 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ 𝑀) |
| 401 | 381 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ) |
| 402 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 0 ∈ ℤ) |
| 403 | 100 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑀 ∈ ℤ) |
| 404 | | elfz 12332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑙 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑙 ∈
(0...𝑀) ↔ (0 ≤
𝑙 ∧ 𝑙 ≤ 𝑀))) |
| 405 | 401, 402,
403, 404 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑙 ∈ (0...𝑀) ↔ (0 ≤ 𝑙 ∧ 𝑙 ≤ 𝑀))) |
| 406 | 389, 400,
405 | mpbir2and 957 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (0...𝑀)) |
| 407 | 379, 406 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑄‘𝑙) ∈ ℝ) |
| 408 | 407 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) ∧ 𝑙 ∈ (1...𝑗)) → (𝑄‘𝑙) ∈ ℝ) |
| 409 | 9 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑄:(0...𝑀)⟶ℝ) |
| 410 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ∈
ℤ) |
| 411 | 100 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℤ) |
| 412 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℤ) |
| 413 | 412 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ) |
| 414 | 410, 411,
413 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑙 ∈
ℤ)) |
| 415 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 ∈
ℝ) |
| 416 | 412 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℝ) |
| 417 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 1 ∈
ℝ) |
| 418 | 384 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 <
1) |
| 419 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 1 ≤ 𝑙) |
| 420 | 415, 417,
416, 418, 419 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 < 𝑙) |
| 421 | 415, 416,
420 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 ≤ 𝑙) |
| 422 | 421 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ≤ 𝑙) |
| 423 | 413 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ) |
| 424 | 391 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℝ) |
| 425 | 393 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ) |
| 426 | 416 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ) |
| 427 | | peano2rem 10348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ ℝ → (𝑗 − 1) ∈
ℝ) |
| 428 | 393, 427 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 − 1) ∈ ℝ) |
| 429 | 428 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ) |
| 430 | 393 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ) |
| 431 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ≤ (𝑗 − 1)) |
| 432 | 431 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑗 − 1)) |
| 433 | 430 | ltm1d 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) < 𝑗) |
| 434 | 426, 429,
430, 432, 433 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑗) |
| 435 | 434 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑗) |
| 436 | 397 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 < 𝑀) |
| 437 | 423, 425,
424, 435, 436 | lttrd 10198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑀) |
| 438 | 423, 424,
437 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ 𝑀) |
| 439 | 414, 422,
438 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
𝑙 ∈ ℤ) ∧ (0
≤ 𝑙 ∧ 𝑙 ≤ 𝑀))) |
| 440 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑙 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑙 ∈ ℤ) ∧ (0 ≤
𝑙 ∧ 𝑙 ≤ 𝑀))) |
| 441 | 439, 440 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (0...𝑀)) |
| 442 | 409, 441 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) ∈ ℝ) |
| 443 | 413 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℤ) |
| 444 | 410, 411,
443 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
(𝑙 + 1) ∈
ℤ)) |
| 445 | 416, 417 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) ∈ ℝ) |
| 446 | 416, 417,
420, 418 | addgt0d 10602 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 < (𝑙 + 1)) |
| 447 | 415, 445,
446 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 ≤ (𝑙 + 1)) |
| 448 | 447 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ≤ (𝑙 + 1)) |
| 449 | 445 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℝ) |
| 450 | 445 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) ∈ ℂ) |
| 451 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 1 ∈
ℂ) |
| 452 | 450, 451 | npcand 10396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (((𝑙 + 1) − 1) + 1) = (𝑙 + 1)) |
| 453 | 452 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) = (((𝑙 + 1) − 1) + 1)) |
| 454 | 453 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) = (((𝑙 + 1) − 1) + 1)) |
| 455 | | peano2re 10209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ ℝ → (𝑙 + 1) ∈
ℝ) |
| 456 | | peano2rem 10348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑙 + 1) ∈ ℝ →
((𝑙 + 1) − 1) ∈
ℝ) |
| 457 | 426, 455,
456 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) − 1) ∈
ℝ) |
| 458 | | peano2re 10209 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑗 − 1) ∈ ℝ
→ ((𝑗 − 1) + 1)
∈ ℝ) |
| 459 | | peano2rem 10348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑗 − 1) + 1) ∈ ℝ
→ (((𝑗 − 1) + 1)
− 1) ∈ ℝ) |
| 460 | 429, 458,
459 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (((𝑗 − 1) + 1) − 1) ∈
ℝ) |
| 461 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈
ℝ) |
| 462 | | elfzel2 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑗 − 1) ∈ ℤ) |
| 463 | 462 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑗 − 1) ∈ ℝ) |
| 464 | 463, 417 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → ((𝑗 − 1) + 1) ∈
ℝ) |
| 465 | 416, 463,
417, 431 | leadd1dd 10641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) ≤ ((𝑗 − 1) + 1)) |
| 466 | 445, 464,
417, 465 | lesub1dd 10643 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → ((𝑙 + 1) − 1) ≤ (((𝑗 − 1) + 1) − 1)) |
| 467 | 466 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) − 1) ≤ (((𝑗 − 1) + 1) − 1)) |
| 468 | 457, 460,
461, 467 | leadd1dd 10641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (((𝑙 + 1) − 1) + 1) ≤ ((((𝑗 − 1) + 1) − 1) +
1)) |
| 469 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
| 470 | 364, 469 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 − 1) ∈ ℤ) |
| 471 | 470 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑗 ∈ (0..^𝑀) → ((𝑗 − 1) + 1) ∈
ℤ) |
| 472 | 471 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ (0..^𝑀) → ((𝑗 − 1) + 1) ∈
ℂ) |
| 473 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ (0..^𝑀) → 1 ∈ ℂ) |
| 474 | 472, 473 | npcand 10396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (0..^𝑀) → ((((𝑗 − 1) + 1) − 1) + 1) = ((𝑗 − 1) +
1)) |
| 475 | 393 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℂ) |
| 476 | 475, 473 | npcand 10396 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (0..^𝑀) → ((𝑗 − 1) + 1) = 𝑗) |
| 477 | 474, 476 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0..^𝑀) → ((((𝑗 − 1) + 1) − 1) + 1) = 𝑗) |
| 478 | 477 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((((𝑗 − 1) + 1) − 1) + 1) = 𝑗) |
| 479 | 468, 478 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (((𝑙 + 1) − 1) + 1) ≤ 𝑗) |
| 480 | 454, 479 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝑗) |
| 481 | 480 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝑗) |
| 482 | 449, 425,
424, 481, 436 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) < 𝑀) |
| 483 | 449, 424,
482 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝑀) |
| 484 | 444, 448,
483 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧
(𝑙 + 1) ∈ ℤ)
∧ (0 ≤ (𝑙 + 1) ∧
(𝑙 + 1) ≤ 𝑀))) |
| 485 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑙 + 1) ∈ (0...𝑀) ↔ ((0 ∈ ℤ
∧ 𝑀 ∈ ℤ
∧ (𝑙 + 1) ∈
ℤ) ∧ (0 ≤ (𝑙 +
1) ∧ (𝑙 + 1) ≤ 𝑀))) |
| 486 | 484, 485 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ (0...𝑀)) |
| 487 | 409, 486 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘(𝑙 + 1)) ∈ ℝ) |
| 488 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝜑) |
| 489 | | 0zd 11389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ∈
ℤ) |
| 490 | 412 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ) |
| 491 | 421 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ≤ 𝑙) |
| 492 | | eluz2 11693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ 0 ≤
𝑙)) |
| 493 | 489, 490,
491, 492 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈
(ℤ≥‘0)) |
| 494 | | elfzoel2 12469 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
| 495 | 494 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℤ) |
| 496 | 495 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℝ) |
| 497 | 397 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 < 𝑀) |
| 498 | 426, 430,
496, 434, 497 | lttrd 10198 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑀) |
| 499 | | elfzo2 12473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (0..^𝑀) ↔ (𝑙 ∈ (ℤ≥‘0)
∧ 𝑀 ∈ ℤ
∧ 𝑙 < 𝑀)) |
| 500 | 493, 495,
498, 499 | syl3anbrc 1246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (0..^𝑀)) |
| 501 | 500 | adantll 750 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (0..^𝑀)) |
| 502 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑙 → (𝑖 ∈ (0..^𝑀) ↔ 𝑙 ∈ (0..^𝑀))) |
| 503 | 502 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝑙 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑙 ∈ (0..^𝑀)))) |
| 504 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑙 → (𝑄‘𝑖) = (𝑄‘𝑙)) |
| 505 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = 𝑙 → (𝑖 + 1) = (𝑙 + 1)) |
| 506 | 505 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑙 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑙 + 1))) |
| 507 | 504, 506 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝑙 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑙) < (𝑄‘(𝑙 + 1)))) |
| 508 | 503, 507 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑙 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → (𝑄‘𝑙) < (𝑄‘(𝑙 + 1))))) |
| 509 | 508, 152 | chvarv 2263 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → (𝑄‘𝑙) < (𝑄‘(𝑙 + 1))) |
| 510 | 488, 501,
509 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) < (𝑄‘(𝑙 + 1))) |
| 511 | 442, 487,
510 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) ≤ (𝑄‘(𝑙 + 1))) |
| 512 | 511 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) ≤ (𝑄‘(𝑙 + 1))) |
| 513 | 378, 408,
512 | monoord 12831 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝑄‘1) ≤ (𝑄‘𝑗)) |
| 514 | 356, 357,
361, 362, 513 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝐴 < (𝑄‘𝑗)) |
| 515 | 356, 361 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝐴 < (𝑄‘𝑗) ↔ ¬ (𝑄‘𝑗) ≤ 𝐴)) |
| 516 | 514, 515 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → ¬ (𝑄‘𝑗) ≤ 𝐴) |
| 517 | 516 | ex 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (¬ 𝑗 ≤ 0 → ¬ (𝑄‘𝑗) ≤ 𝐴)) |
| 518 | 517 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → (¬ 𝑗 ≤ 0 → ¬ (𝑄‘𝑗) ≤ 𝐴)) |
| 519 | 355, 518 | mt4d 152 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 𝑗 ≤ 0) |
| 520 | | elfzole1 12478 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0..^𝑀) → 0 ≤ 𝑗) |
| 521 | 520 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 0 ≤ 𝑗) |
| 522 | 393 | 3ad2ant2 1083 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 𝑗 ∈ ℝ) |
| 523 | | 0red 10041 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 0 ∈ ℝ) |
| 524 | 522, 523 | letri3d 10179 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → (𝑗 = 0 ↔ (𝑗 ≤ 0 ∧ 0 ≤ 𝑗))) |
| 525 | 519, 521,
524 | mpbir2and 957 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 𝑗 = 0) |
| 526 | 347, 349,
354, 525 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝑗 = 0) |
| 527 | | velsn 4193 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ {0} ↔ 𝑗 = 0) |
| 528 | 526, 527 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝑗 ∈ {0}) |
| 529 | 528 | ralrimiva 2966 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}𝑗 ∈ {0}) |
| 530 | | dfss3 3592 |
. . . . . . . . . . . . 13
⊢ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ⊆ {0} ↔ ∀𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}𝑗 ∈ {0}) |
| 531 | 529, 530 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ⊆ {0}) |
| 532 | 157, 114 | eqeltrd 2701 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 533 | 532, 157 | eqled 10140 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) |
| 534 | 145 | breq1d 4663 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → ((𝑄‘𝑖) ≤ 𝐴 ↔ (𝑄‘0) ≤ 𝐴)) |
| 535 | 534 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ 𝐴)) |
| 536 | 141, 533,
535 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) |
| 537 | 536 | snssd 4340 |
. . . . . . . . . . . 12
⊢ (𝜑 → {0} ⊆ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) |
| 538 | 531, 537 | eqssd 3620 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} = {0}) |
| 539 | 538 | supeq1d 8352 |
. . . . . . . . . 10
⊢ (𝜑 → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < ) = sup({0}, ℝ, <
)) |
| 540 | | supsn 8378 |
. . . . . . . . . . . 12
⊢ (( <
Or ℝ ∧ 0 ∈ ℝ) → sup({0}, ℝ, < ) =
0) |
| 541 | 59, 142, 540 | mp2an 708 |
. . . . . . . . . . 11
⊢ sup({0},
ℝ, < ) = 0 |
| 542 | 541 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → sup({0}, ℝ, < ) =
0) |
| 543 | 539, 542 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < ) = 0) |
| 544 | 543 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < ) = 0) |
| 545 | 334, 346,
544 | 3eqtrd 2660 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐼‘(𝑆‘𝑗)) = 0) |
| 546 | 545 | oveq1d 6665 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → ((𝐼‘(𝑆‘𝑗)) + 1) = (0 + 1)) |
| 547 | 546 | fveq2d 6195 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘(0 + 1))) |
| 548 | 547, 159 | syl6req 2673 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝑄‘1) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 549 | 330, 548 | breqtrd 4679 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 550 | 65 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝜑 ∧ (𝑆‘𝑗) ∈ ℝ)) |
| 551 | | simplr 792 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑗 ∈ (0..^𝑁)) |
| 552 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))) |
| 553 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → 𝑦 = (𝐸‘(𝑆‘𝑗))) |
| 554 | | neqne 2802 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 → (𝐸‘(𝑆‘𝑗)) ≠ 𝐵) |
| 555 | 554 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → (𝐸‘(𝑆‘𝑗)) ≠ 𝐵) |
| 556 | 553, 555 | eqnetrd 2861 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → 𝑦 ≠ 𝐵) |
| 557 | 556 | neneqd 2799 |
. . . . . . . . . . . . . 14
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → ¬ 𝑦 = 𝐵) |
| 558 | 557 | iffalsed 4097 |
. . . . . . . . . . . . 13
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → if(𝑦 = 𝐵, 𝐴, 𝑦) = 𝑦) |
| 559 | 558, 553 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → if(𝑦 = 𝐵, 𝐴, 𝑦) = (𝐸‘(𝑆‘𝑗))) |
| 560 | 559 | adantll 750 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → if(𝑦 = 𝐵, 𝐴, 𝑦) = (𝐸‘(𝑆‘𝑗))) |
| 561 | 114, 218,
220, 11, 12 | fourierdlem4 40328 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
| 562 | 561 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
| 563 | 562, 42 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵)) |
| 564 | 563 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵)) |
| 565 | 552, 560,
564, 564 | fvmptd 6288 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐿‘(𝐸‘(𝑆‘𝑗))) = (𝐸‘(𝑆‘𝑗))) |
| 566 | 565 | eqcomd 2628 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) = (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 567 | 114, 218,
220, 13 | fourierdlem17 40341 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
| 568 | 567 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
| 569 | 114, 218 | iccssred 39727 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 570 | 569 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ) |
| 571 | 568, 570 | fssd 6057 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐿:(𝐴(,]𝐵)⟶ℝ) |
| 572 | 571, 563 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) ∈ ℝ) |
| 573 | 572 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐿‘(𝐸‘(𝑆‘𝑗))) ∈ ℝ) |
| 574 | 566, 573 | eqeltrd 2701 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) ∈ ℝ) |
| 575 | 218 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐵 ∈ ℝ) |
| 576 | 245 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 ∈
ℝ*) |
| 577 | 218 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐵 ∈ ℝ) |
| 578 | | elioc2 12236 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘(𝑆‘𝑗)) ∈ ℝ ∧ 𝐴 < (𝐸‘(𝑆‘𝑗)) ∧ (𝐸‘(𝑆‘𝑗)) ≤ 𝐵))) |
| 579 | 576, 577,
578 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘(𝑆‘𝑗)) ∈ ℝ ∧ 𝐴 < (𝐸‘(𝑆‘𝑗)) ∧ (𝐸‘(𝑆‘𝑗)) ≤ 𝐵))) |
| 580 | 563, 579 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘𝑗)) ∈ ℝ ∧ 𝐴 < (𝐸‘(𝑆‘𝑗)) ∧ (𝐸‘(𝑆‘𝑗)) ≤ 𝐵)) |
| 581 | 580 | simp3d 1075 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐸‘(𝑆‘𝑗)) ≤ 𝐵) |
| 582 | 581 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) ≤ 𝐵) |
| 583 | 554 | necomd 2849 |
. . . . . . . . 9
⊢ (¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 → 𝐵 ≠ (𝐸‘(𝑆‘𝑗))) |
| 584 | 583 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐵 ≠ (𝐸‘(𝑆‘𝑗))) |
| 585 | 574, 575,
582, 584 | leneltd 10191 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) < 𝐵) |
| 586 | 585 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) < 𝐵) |
| 587 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ ((𝐼‘(𝑆‘𝑗)) = (𝑀 − 1) → ((𝐼‘(𝑆‘𝑗)) + 1) = ((𝑀 − 1) + 1)) |
| 588 | 2 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 589 | | 1cnd 10056 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
| 590 | 588, 589 | npcand 10396 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
| 591 | 587, 590 | sylan9eqr 2678 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) = 𝑀) |
| 592 | 591 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘𝑀)) |
| 593 | 156 | simprd 479 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 594 | 593 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑄‘𝑀) = 𝐵) |
| 595 | 592, 594 | eqtr2d 2657 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝐵 = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 596 | 595 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝐵 = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 597 | 596 | adantlr 751 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝐵 = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 598 | 586, 597 | breqtrd 4679 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 599 | 566 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) = (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 600 | | ssrab2 3687 |
. . . . . . . . . . . . 13
⊢ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ (0..^𝑀) |
| 601 | | fzssz 12343 |
. . . . . . . . . . . . . . 15
⊢
(0...𝑀) ⊆
ℤ |
| 602 | 17, 601 | sstri 3612 |
. . . . . . . . . . . . . 14
⊢
(0..^𝑀) ⊆
ℤ |
| 603 | | zssre 11384 |
. . . . . . . . . . . . . 14
⊢ ℤ
⊆ ℝ |
| 604 | 602, 603 | sstri 3612 |
. . . . . . . . . . . . 13
⊢
(0..^𝑀) ⊆
ℝ |
| 605 | 600, 604 | sstri 3612 |
. . . . . . . . . . . 12
⊢ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ |
| 606 | 605 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ) |
| 607 | 56 | neeq1d 2853 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑆‘𝑗) → ({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅ ↔ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅)) |
| 608 | 67, 607 | imbi12d 334 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑆‘𝑗) → (((𝜑 ∧ 𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅) ↔ ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅))) |
| 609 | 141 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀)) |
| 610 | 533 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴) |
| 611 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸‘𝑥) = 𝐵 → if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥)) = 𝐴) |
| 612 | 611 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸‘𝑥) = 𝐵 → 𝐴 = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 613 | 612 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐸‘𝑥) = 𝐵) → 𝐴 = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 614 | 610, 613 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 615 | 532 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ) |
| 616 | 114 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
| 617 | 616 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈
ℝ*) |
| 618 | 218 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
| 619 | | iocssre 12253 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
| 620 | 617, 618,
619 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) |
| 621 | 561 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐸‘𝑥) ∈ (𝐴(,]𝐵)) |
| 622 | 620, 621 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐸‘𝑥) ∈ ℝ) |
| 623 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴) |
| 624 | | elioc2 12236 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((𝐸‘𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘𝑥) ∈ ℝ ∧ 𝐴 < (𝐸‘𝑥) ∧ (𝐸‘𝑥) ≤ 𝐵))) |
| 625 | 617, 618,
624 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐸‘𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘𝑥) ∈ ℝ ∧ 𝐴 < (𝐸‘𝑥) ∧ (𝐸‘𝑥) ≤ 𝐵))) |
| 626 | 621, 625 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐸‘𝑥) ∈ ℝ ∧ 𝐴 < (𝐸‘𝑥) ∧ (𝐸‘𝑥) ≤ 𝐵)) |
| 627 | 626 | simp2d 1074 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 < (𝐸‘𝑥)) |
| 628 | 623, 627 | eqbrtrd 4675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸‘𝑥)) |
| 629 | 615, 622,
628 | ltled 10185 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸‘𝑥)) |
| 630 | 629 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸‘𝑥)) |
| 631 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝐸‘𝑥) = 𝐵 → if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥)) = (𝐸‘𝑥)) |
| 632 | 631 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝐸‘𝑥) = 𝐵 → (𝐸‘𝑥) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 633 | 632 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐸‘𝑥) = 𝐵) → (𝐸‘𝑥) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 634 | 630, 633 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 635 | 614, 634 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 636 | 13 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))) |
| 637 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐸‘𝑥) → (𝑦 = 𝐵 ↔ (𝐸‘𝑥) = 𝐵)) |
| 638 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐸‘𝑥) → 𝑦 = (𝐸‘𝑥)) |
| 639 | 637, 638 | ifbieq2d 4111 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝐸‘𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 640 | 639 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸‘𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 641 | 616, 622 | ifcld 4131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥)) ∈ ℝ) |
| 642 | 636, 640,
621, 641 | fvmptd 6288 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐿‘(𝐸‘𝑥)) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
| 643 | 635, 642 | breqtrrd 4681 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸‘𝑥))) |
| 644 | 145 | breq1d 4663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸‘𝑥)))) |
| 645 | 644 | elrab 3363 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸‘𝑥)))) |
| 646 | 609, 643,
645 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}) |
| 647 | | ne0i 3921 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅) |
| 648 | 646, 647 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅) |
| 649 | 608, 648 | vtoclg 3266 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑗) ∈ ℝ → ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅)) |
| 650 | 42, 65, 649 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅) |
| 651 | 650 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅) |
| 652 | 605 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ) |
| 653 | | fzofi 12773 |
. . . . . . . . . . . . . . 15
⊢
(0..^𝑀) ∈
Fin |
| 654 | | ssfi 8180 |
. . . . . . . . . . . . . . 15
⊢
(((0..^𝑀) ∈ Fin
∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ (0..^𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin) |
| 655 | 653, 600,
654 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin |
| 656 | 655 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin) |
| 657 | | fimaxre2 10969 |
. . . . . . . . . . . . 13
⊢ (({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) |
| 658 | 652, 656,
657 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) |
| 659 | 658 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) |
| 660 | | 0red 10041 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 ∈ ℝ) |
| 661 | 604, 47 | sseldi 3601 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ ℝ) |
| 662 | | 1red 10055 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 1 ∈ ℝ) |
| 663 | 661, 662 | readdcld 10069 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℝ) |
| 664 | | elfzouz 12474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀) → (𝐼‘(𝑆‘𝑗)) ∈
(ℤ≥‘0)) |
| 665 | | eluzle 11700 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (ℤ≥‘0)
→ 0 ≤ (𝐼‘(𝑆‘𝑗))) |
| 666 | 47, 664, 665 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 ≤ (𝐼‘(𝑆‘𝑗))) |
| 667 | 384 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < 1) |
| 668 | 661, 662,
666, 667 | addgegt0d 10601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < ((𝐼‘(𝑆‘𝑗)) + 1)) |
| 669 | 660, 663,
668 | ltled 10185 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1)) |
| 670 | 669 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1)) |
| 671 | 661 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐼‘(𝑆‘𝑗)) ∈ ℝ) |
| 672 | | 1red 10055 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℝ) |
| 673 | 391, 672 | resubcld 10458 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 − 1) ∈ ℝ) |
| 674 | 673 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ) |
| 675 | | 1red 10055 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 1 ∈
ℝ) |
| 676 | | elfzolt2 12479 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀) → (𝐼‘(𝑆‘𝑗)) < 𝑀) |
| 677 | 47, 676 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) < 𝑀) |
| 678 | 601, 43 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ ℤ) |
| 679 | 100 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℤ) |
| 680 | | zltlem1 11430 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝑆‘𝑗)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐼‘(𝑆‘𝑗)) < 𝑀 ↔ (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1))) |
| 681 | 678, 679,
680 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) < 𝑀 ↔ (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1))) |
| 682 | 677, 681 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1)) |
| 683 | 682 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1)) |
| 684 | | neqne 2802 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝐼‘(𝑆‘𝑗)) = (𝑀 − 1) → (𝐼‘(𝑆‘𝑗)) ≠ (𝑀 − 1)) |
| 685 | 684 | necomd 2849 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐼‘(𝑆‘𝑗)) = (𝑀 − 1) → (𝑀 − 1) ≠ (𝐼‘(𝑆‘𝑗))) |
| 686 | 685 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑀 − 1) ≠ (𝐼‘(𝑆‘𝑗))) |
| 687 | 671, 674,
683, 686 | leneltd 10191 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐼‘(𝑆‘𝑗)) < (𝑀 − 1)) |
| 688 | 671, 674,
675, 687 | ltadd1dd 10638 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) < ((𝑀 − 1) + 1)) |
| 689 | 590 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀) |
| 690 | 688, 689 | breqtrd 4679 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) < 𝑀) |
| 691 | 601, 49 | sseldi 3601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℤ) |
| 692 | 691 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℤ) |
| 693 | | 0zd 11389 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 0 ∈
ℤ) |
| 694 | 100 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝑀 ∈ ℤ) |
| 695 | | elfzo 12472 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℤ ∧ 0 ∈ ℤ
∧ 𝑀 ∈ ℤ)
→ (((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀) ↔ (0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1) ∧ ((𝐼‘(𝑆‘𝑗)) + 1) < 𝑀))) |
| 696 | 692, 693,
694, 695 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀) ↔ (0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1) ∧ ((𝐼‘(𝑆‘𝑗)) + 1) < 𝑀))) |
| 697 | 670, 690,
696 | mpbir2and 957 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀)) |
| 698 | 697 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀)) |
| 699 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 700 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = ((𝐼‘(𝑆‘𝑗)) + 1) → (𝑄‘𝑖) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 701 | 700 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (𝑖 = ((𝐼‘(𝑆‘𝑗)) + 1) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ↔ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 702 | 701 | elrab 3363 |
. . . . . . . . . . . 12
⊢ (((𝐼‘(𝑆‘𝑗)) + 1) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ↔ (((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 703 | 698, 699,
702 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) |
| 704 | | suprub 10984 |
. . . . . . . . . . 11
⊢ ((({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) ∧ ((𝐼‘(𝑆‘𝑗)) + 1) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) → ((𝐼‘(𝑆‘𝑗)) + 1) ≤ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 705 | 606, 651,
659, 703, 704 | syl31anc 1329 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ≤ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
| 706 | 62 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = (𝐼‘(𝑆‘𝑗))) |
| 707 | 706 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = (𝐼‘(𝑆‘𝑗))) |
| 708 | 705, 707 | breqtrd 4679 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗))) |
| 709 | 661 | ltp1d 10954 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) < ((𝐼‘(𝑆‘𝑗)) + 1)) |
| 710 | 661, 663 | ltnled 10184 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) < ((𝐼‘(𝑆‘𝑗)) + 1) ↔ ¬ ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗)))) |
| 711 | 709, 710 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗))) |
| 712 | 711 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ¬ ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗))) |
| 713 | 708, 712 | pm2.65da 600 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ¬ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
| 714 | 572 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) ∈ ℝ) |
| 715 | 50 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈ ℝ) |
| 716 | 714, 715 | ltnled 10184 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐿‘(𝐸‘(𝑆‘𝑗))) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ↔ ¬ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
| 717 | 713, 716 | mpbird 247 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 718 | 717 | adantlr 751 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 719 | 599, 718 | eqbrtrd 4675 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 720 | 598, 719 | pm2.61dan 832 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 721 | 2 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝑀 ∈ ℕ) |
| 722 | 1 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝑄 ∈ (𝑃‘𝑀)) |
| 723 | 21 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝐶 ∈ ℝ) |
| 724 | 22 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝐷 ∈ ℝ) |
| 725 | 23 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝐶 < 𝐷) |
| 726 | 49 | 3adant3 1081 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0...𝑀)) |
| 727 | | simp2 1062 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝑗 ∈ (0..^𝑁)) |
| 728 | 42 | leidd 10594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ≤ (𝑆‘𝑗)) |
| 729 | | elico2 12237 |
. . . . . . . . 9
⊢ (((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ*) →
((𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ ((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘𝑗) ≤ (𝑆‘𝑗) ∧ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))))) |
| 730 | 42, 212, 729 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ ((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘𝑗) ≤ (𝑆‘𝑗) ∧ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))))) |
| 731 | 42, 728, 131, 730 | mpbir3and 1245 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
| 732 | 731 | 3adant3 1081 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
| 733 | | simp3 1063 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 734 | | eqid 2622 |
. . . . . 6
⊢ ((𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) − ((𝐸‘(𝑆‘𝑗)) − (𝑆‘𝑗))) = ((𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) − ((𝐸‘(𝑆‘𝑗)) − (𝑆‘𝑗))) |
| 735 | 11, 3, 721, 722, 723, 724, 725, 24, 25, 26, 27, 12, 726, 727, 732, 733, 734 | fourierdlem63 40386 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 736 | 735 | 3adant1r 1319 |
. . . 4
⊢ (((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 737 | 550, 551,
720, 736 | syl3anc 1326 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 738 | 549, 737 | pm2.61dan 832 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
| 739 | | ioossioo 12265 |
. 2
⊢ ((((𝑄‘(𝐼‘(𝑆‘𝑗))) ∈ ℝ* ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈ ℝ*) ∧
((𝑄‘(𝐼‘(𝑆‘𝑗))) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ∧ (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) |
| 740 | 45, 51, 89, 738, 739 | syl22anc 1327 |
1
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) |