Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupubuz Structured version   Visualization version   GIF version

Theorem limsupubuz 39945
Description: For a real-valued function on a set of upper integers, if the superior limit is not +∞, then the function is bounded above. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupubuz.j 𝑗𝐹
limsupubuz.z 𝑍 = (ℤ𝑀)
limsupubuz.f (𝜑𝐹:𝑍⟶ℝ)
limsupubuz.n (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupubuz (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑀   𝑗,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑗)   𝑀(𝑗)

Proof of Theorem limsupubuz
Dummy variables 𝑖 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . . . 6 𝑙𝜑
2 nfcv 2764 . . . . . 6 𝑙𝐹
3 limsupubuz.z . . . . . . . 8 𝑍 = (ℤ𝑀)
4 uzssre 39620 . . . . . . . 8 (ℤ𝑀) ⊆ ℝ
53, 4eqsstri 3635 . . . . . . 7 𝑍 ⊆ ℝ
65a1i 11 . . . . . 6 (𝜑𝑍 ⊆ ℝ)
7 limsupubuz.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ)
87frexr 39604 . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
9 limsupubuz.n . . . . . 6 (𝜑 → (lim sup‘𝐹) ≠ +∞)
101, 2, 6, 8, 9limsupub 39936 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
1110adantr 481 . . . 4 ((𝜑𝑀 ∈ ℤ) → ∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
12 nfv 1843 . . . . . . . . . . . 12 𝑙 𝑀 ∈ ℤ
131, 12nfan 1828 . . . . . . . . . . 11 𝑙(𝜑𝑀 ∈ ℤ)
14 nfv 1843 . . . . . . . . . . 11 𝑙 𝑦 ∈ ℝ
1513, 14nfan 1828 . . . . . . . . . 10 𝑙((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ)
16 nfv 1843 . . . . . . . . . 10 𝑙 𝑘 ∈ ℝ
1715, 16nfan 1828 . . . . . . . . 9 𝑙(((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
18 nfra1 2941 . . . . . . . . 9 𝑙𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)
1917, 18nfan 1828 . . . . . . . 8 𝑙((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
20 nfmpt1 4747 . . . . . . . . . . . 12 𝑙(𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
2120nfrn 5368 . . . . . . . . . . 11 𝑙ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙))
22 nfcv 2764 . . . . . . . . . . 11 𝑙
23 nfcv 2764 . . . . . . . . . . 11 𝑙 <
2421, 22, 23nfsup 8357 . . . . . . . . . 10 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
25 nfcv 2764 . . . . . . . . . 10 𝑙
26 nfcv 2764 . . . . . . . . . 10 𝑙𝑦
2724, 25, 26nfbr 4699 . . . . . . . . 9 𝑙sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦
2827, 26, 24nfif 4115 . . . . . . . 8 𝑙if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
29 breq2 4657 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → (𝑘𝑙𝑘𝑖))
30 fveq2 6191 . . . . . . . . . . . . . 14 (𝑙 = 𝑖 → (𝐹𝑙) = (𝐹𝑖))
3130breq1d 4663 . . . . . . . . . . . . 13 (𝑙 = 𝑖 → ((𝐹𝑙) ≤ 𝑦 ↔ (𝐹𝑖) ≤ 𝑦))
3229, 31imbi12d 334 . . . . . . . . . . . 12 (𝑙 = 𝑖 → ((𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)))
3332cbvralv 3171 . . . . . . . . . . 11 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) ↔ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3433biimpi 206 . . . . . . . . . 10 (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
3534adantl 482 . . . . . . . . 9 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦))
36 simp-4r 807 . . . . . . . . 9 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑀 ∈ ℤ)
3735, 36syldan 487 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑀 ∈ ℤ)
387ad4antr 768 . . . . . . . . 9 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
3935, 38syldan 487 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝐹:𝑍⟶ℝ)
40 simpllr 799 . . . . . . . . 9 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑦 ∈ ℝ)
4135, 40syldan 487 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑦 ∈ ℝ)
42 simplr 792 . . . . . . . . 9 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4335, 42syldan 487 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → 𝑘 ∈ ℝ)
4433biimpri 218 . . . . . . . . 9 (∀𝑖𝑍 (𝑘𝑖 → (𝐹𝑖) ≤ 𝑦) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
4535, 44syl 17 . . . . . . . 8 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦))
46 eqid 2622 . . . . . . . 8 if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘)) = if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))
47 eqid 2622 . . . . . . . 8 sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) = sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )
48 eqid 2622 . . . . . . . 8 if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < )) = if(sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ) ≤ 𝑦, 𝑦, sup(ran (𝑙 ∈ (𝑀...if((⌈‘𝑘) ≤ 𝑀, 𝑀, (⌈‘𝑘))) ↦ (𝐹𝑙)), ℝ, < ))
4919, 28, 37, 3, 39, 41, 43, 45, 46, 47, 48limsupubuzlem 39944 . . . . . . 7 (((((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦)) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
5049exp31 630 . . . . . 6 (((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)))
5150rexlimdv 3030 . . . . 5 (((𝜑𝑀 ∈ ℤ) ∧ 𝑦 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5251rexlimdva 3031 . . . 4 ((𝜑𝑀 ∈ ℤ) → (∃𝑦 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑙𝑍 (𝑘𝑙 → (𝐹𝑙) ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥))
5311, 52mpd 15 . . 3 ((𝜑𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
543a1i 11 . . . . . 6 𝑀 ∈ ℤ → 𝑍 = (ℤ𝑀))
55 uz0 39639 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
5654, 55eqtrd 2656 . . . . 5 𝑀 ∈ ℤ → 𝑍 = ∅)
57 0red 10041 . . . . . 6 (𝑍 = ∅ → 0 ∈ ℝ)
58 rzal 4073 . . . . . 6 (𝑍 = ∅ → ∀𝑙𝑍 (𝐹𝑙) ≤ 0)
59 breq2 4657 . . . . . . . 8 (𝑥 = 0 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑙) ≤ 0))
6059ralbidv 2986 . . . . . . 7 (𝑥 = 0 → (∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∀𝑙𝑍 (𝐹𝑙) ≤ 0))
6160rspcev 3309 . . . . . 6 ((0 ∈ ℝ ∧ ∀𝑙𝑍 (𝐹𝑙) ≤ 0) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6257, 58, 61syl2anc 693 . . . . 5 (𝑍 = ∅ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6356, 62syl 17 . . . 4 𝑀 ∈ ℤ → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6463adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑀 ∈ ℤ) → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
6553, 64pm2.61dan 832 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥)
66 limsupubuz.j . . . . . 6 𝑗𝐹
67 nfcv 2764 . . . . . 6 𝑗𝑙
6866, 67nffv 6198 . . . . 5 𝑗(𝐹𝑙)
69 nfcv 2764 . . . . 5 𝑗
70 nfcv 2764 . . . . 5 𝑗𝑥
7168, 69, 70nfbr 4699 . . . 4 𝑗(𝐹𝑙) ≤ 𝑥
72 nfv 1843 . . . 4 𝑙(𝐹𝑗) ≤ 𝑥
73 fveq2 6191 . . . . 5 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
7473breq1d 4663 . . . 4 (𝑙 = 𝑗 → ((𝐹𝑙) ≤ 𝑥 ↔ (𝐹𝑗) ≤ 𝑥))
7571, 72, 74cbvral 3167 . . 3 (∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7675rexbii 3041 . 2 (∃𝑥 ∈ ℝ ∀𝑙𝑍 (𝐹𝑙) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
7765, 76sylib 208 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗𝑍 (𝐹𝑗) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wnfc 2751  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915  ifcif 4086   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935  0cc0 9936  +∞cpnf 10071   < clt 10074  cle 10075  cz 11377  cuz 11687  ...cfz 12326  cceil 12592  lim supclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-ico 12181  df-fz 12327  df-fl 12593  df-ceil 12594  df-limsup 14202
This theorem is referenced by:  limsupubuzmpt  39951  limsupvaluz2  39970  supcnvlimsup  39972
  Copyright terms: Public domain W3C validator