Step | Hyp | Ref
| Expression |
1 | | binomcxplem.s |
. . . 4
⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
2 | | binomcxplem.p |
. . . . 5
⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) |
3 | | binomcxplem.d |
. . . . . . 7
⊢ 𝐷 = (◡abs “ (0[,)𝑅)) |
4 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑏◡abs |
5 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑏0 |
6 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑏[,) |
7 | | binomcxplem.r |
. . . . . . . . . 10
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
8 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏
+ |
9 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
10 | 1, 9 | nfcxfr 2762 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏𝑆 |
11 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑏𝑟 |
12 | 10, 11 | nffv 6198 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑏(𝑆‘𝑟) |
13 | 5, 8, 12 | nfseq 12811 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑏seq0(
+ , (𝑆‘𝑟)) |
14 | 13 | nfel1 2779 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏seq0( + ,
(𝑆‘𝑟)) ∈ dom ⇝ |
15 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑏ℝ |
16 | 14, 15 | nfrab 3123 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏{𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ } |
17 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏ℝ* |
18 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑏
< |
19 | 16, 17, 18 | nfsup 8357 |
. . . . . . . . . 10
⊢
Ⅎ𝑏sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
20 | 7, 19 | nfcxfr 2762 |
. . . . . . . . 9
⊢
Ⅎ𝑏𝑅 |
21 | 5, 6, 20 | nfov 6676 |
. . . . . . . 8
⊢
Ⅎ𝑏(0[,)𝑅) |
22 | 4, 21 | nfima 5474 |
. . . . . . 7
⊢
Ⅎ𝑏(◡abs
“ (0[,)𝑅)) |
23 | 3, 22 | nfcxfr 2762 |
. . . . . 6
⊢
Ⅎ𝑏𝐷 |
24 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑦𝐷 |
25 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑦Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘) |
26 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑏ℕ0 |
27 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑏𝑦 |
28 | 10, 27 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑏(𝑆‘𝑦) |
29 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑏𝑚 |
30 | 28, 29 | nffv 6198 |
. . . . . . 7
⊢
Ⅎ𝑏((𝑆‘𝑦)‘𝑚) |
31 | 26, 30 | nfsum 14421 |
. . . . . 6
⊢
Ⅎ𝑏Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚) |
32 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑦) |
33 | 32 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑏) = (𝑆‘𝑦)) |
34 | 33 | fveq1d 6193 |
. . . . . . . 8
⊢ ((𝑏 = 𝑦 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑏)‘𝑘) = ((𝑆‘𝑦)‘𝑘)) |
35 | 34 | sumeq2dv 14433 |
. . . . . . 7
⊢ (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘) = Σ𝑘 ∈ ℕ0 ((𝑆‘𝑦)‘𝑘)) |
36 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑚((𝑆‘𝑦)‘𝑘) |
37 | | nfcv 2764 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘ℂ |
38 | | nfmpt1 4747 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) |
39 | 37, 38 | nfmpt 4746 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
40 | 1, 39 | nfcxfr 2762 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑆 |
41 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑦 |
42 | 40, 41 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑆‘𝑦) |
43 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑚 |
44 | 42, 43 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑆‘𝑦)‘𝑚) |
45 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ((𝑆‘𝑦)‘𝑘) = ((𝑆‘𝑦)‘𝑚)) |
46 | 36, 44, 45 | cbvsumi 14427 |
. . . . . . 7
⊢
Σ𝑘 ∈
ℕ0 ((𝑆‘𝑦)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚) |
47 | 35, 46 | syl6eq 2672 |
. . . . . 6
⊢ (𝑏 = 𝑦 → Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘) = Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚)) |
48 | 23, 24, 25, 31, 47 | cbvmptf 4748 |
. . . . 5
⊢ (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) = (𝑦 ∈ 𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚)) |
49 | 2, 48 | eqtri 2644 |
. . . 4
⊢ 𝑃 = (𝑦 ∈ 𝐷 ↦ Σ𝑚 ∈ ℕ0 ((𝑆‘𝑦)‘𝑚)) |
50 | | ovexd 6680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ V) |
51 | | binomcxplem.f |
. . . . . 6
⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
52 | 51 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
53 | 51 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
54 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
55 | 54 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘)) |
56 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
57 | | binomcxp.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
58 | 57 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈
ℂ) |
59 | 58, 56 | bcccl 38538 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈
ℂ) |
60 | 53, 55, 56, 59 | fvmptd 6288 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐶C𝑐𝑘)) |
61 | 60, 59 | eqeltrd 2701 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
62 | 50, 52, 61 | fmpt2d 6393 |
. . . 4
⊢ (𝜑 → 𝐹:ℕ0⟶ℂ) |
63 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑟ℝ |
64 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑧ℝ |
65 | | nfv 1843 |
. . . . . . 7
⊢
Ⅎ𝑧seq0( + ,
(𝑆‘𝑟)) ∈ dom ⇝ |
66 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑟0 |
67 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑟
+ |
68 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑟(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
69 | 1, 68 | nfcxfr 2762 |
. . . . . . . . . 10
⊢
Ⅎ𝑟𝑆 |
70 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑟𝑧 |
71 | 69, 70 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑟(𝑆‘𝑧) |
72 | 66, 67, 71 | nfseq 12811 |
. . . . . . . 8
⊢
Ⅎ𝑟seq0(
+ , (𝑆‘𝑧)) |
73 | 72 | nfel1 2779 |
. . . . . . 7
⊢
Ⅎ𝑟seq0( + ,
(𝑆‘𝑧)) ∈ dom ⇝ |
74 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑟 = 𝑧 → (𝑆‘𝑟) = (𝑆‘𝑧)) |
75 | 74 | seqeq3d 12809 |
. . . . . . . 8
⊢ (𝑟 = 𝑧 → seq0( + , (𝑆‘𝑟)) = seq0( + , (𝑆‘𝑧))) |
76 | 75 | eleq1d 2686 |
. . . . . . 7
⊢ (𝑟 = 𝑧 → (seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ )) |
77 | 63, 64, 65, 73, 76 | cbvrab 3198 |
. . . . . 6
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝑆‘𝑟)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝
} |
78 | 77 | supeq1i 8353 |
. . . . 5
⊢
sup({𝑟 ∈
ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑧 ∈
ℝ ∣ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
79 | 7, 78 | eqtri 2644 |
. . . 4
⊢ 𝑅 = sup({𝑧 ∈ ℝ ∣ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
80 | 1 | fveq1i 6192 |
. . . . . . . . . . . 12
⊢ (𝑆‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) |
81 | | seqeq3 12806 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) → seq0( + , (𝑆‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧))) |
82 | 80, 81 | ax-mp 5 |
. . . . . . . . . . 11
⊢ seq0( + ,
(𝑆‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) |
83 | 82 | eleq1i 2692 |
. . . . . . . . . 10
⊢ (seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝ ↔
seq0( + , ((𝑏 ∈
ℂ ↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ ) |
84 | 83 | a1i 11 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ → (seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝ ↔
seq0( + , ((𝑏 ∈
ℂ ↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ )) |
85 | 84 | rabbiia 3185 |
. . . . . . . 8
⊢ {𝑧 ∈ ℝ ∣ seq0( +
, (𝑆‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( +
, ((𝑏 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ } |
86 | 85 | supeq1i 8353 |
. . . . . . 7
⊢
sup({𝑧 ∈
ℝ ∣ seq0( + , (𝑆‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
87 | 7, 78, 86 | 3eqtrri 2649 |
. . . . . 6
⊢
sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) = 𝑅 |
88 | 87 | eleq1i 2692 |
. . . . 5
⊢
(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ ↔ 𝑅 ∈ ℝ) |
89 | 87 | oveq2i 6661 |
. . . . . 6
⊢
((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) = ((abs‘𝑥) +
𝑅) |
90 | 89 | oveq1i 6660 |
. . . . 5
⊢
(((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2) = (((abs‘𝑥) + 𝑅) / 2) |
91 | | eqid 2622 |
. . . . 5
⊢
((abs‘𝑥) + 1)
= ((abs‘𝑥) +
1) |
92 | 88, 90, 91 | ifbieq12i 4112 |
. . . 4
⊢
if(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1)) = if(𝑅 ∈ ℝ, (((abs‘𝑥) + 𝑅) / 2), ((abs‘𝑥) + 1)) |
93 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑏 → (𝑤↑𝑘) = (𝑏↑𝑘)) |
94 | 93 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑏 → ((𝐹‘𝑘) · (𝑤↑𝑘)) = ((𝐹‘𝑘) · (𝑏↑𝑘))) |
95 | 94 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑏 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
96 | 95 | cbvmptv 4750 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘)))) = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
97 | 96 | fveq1i 6192 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) |
98 | | seqeq3 12806 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧) = ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧) → seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧))) |
99 | 97, 98 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ seq0( + ,
((𝑤 ∈ ℂ ↦
(𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) = seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) |
100 | 99 | eleq1i 2692 |
. . . . . . . . . . . 12
⊢ (seq0( +
, ((𝑤 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + ,
((𝑏 ∈ ℂ ↦
(𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ ) |
101 | 100 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℝ → (seq0( +
, ((𝑤 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ ↔ seq0( + ,
((𝑏 ∈ ℂ ↦
(𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ )) |
102 | 101 | rabbiia 3185 |
. . . . . . . . . 10
⊢ {𝑧 ∈ ℝ ∣ seq0( +
, ((𝑤 ∈ ℂ
↦ (𝑘 ∈
ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ } = {𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ } |
103 | 102 | supeq1i 8353 |
. . . . . . . . 9
⊢
sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) = sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) |
104 | 103 | eleq1i 2692 |
. . . . . . . 8
⊢
(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ ↔ sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ) |
105 | 103 | oveq2i 6661 |
. . . . . . . . 9
⊢
((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) = ((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) |
106 | 105 | oveq1i 6660 |
. . . . . . . 8
⊢
(((abs‘𝑥) +
sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2) = (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2) |
107 | 104, 106,
91 | ifbieq12i 4112 |
. . . . . . 7
⊢
if(sup({𝑧 ∈
ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1)) = if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1)) |
108 | 107 | oveq2i 6661 |
. . . . . 6
⊢
((abs‘𝑥) +
if(sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) = ((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) |
109 | 108 | oveq1i 6660 |
. . . . 5
⊢
(((abs‘𝑥) +
if(sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑤
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2) = (((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2) |
110 | 109 | oveq2i 6661 |
. . . 4
⊢
(0(ball‘(abs ∘ − ))(((abs‘𝑥) + if(sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑤 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑤↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2)) = (0(ball‘(abs ∘
− ))(((abs‘𝑥) +
if(sup({𝑧 ∈ ℝ
∣ seq0( + , ((𝑏
∈ ℂ ↦ (𝑘
∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< ) ∈ ℝ, (((abs‘𝑥) + sup({𝑧 ∈ ℝ ∣ seq0( + , ((𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0
↦ ((𝐹‘𝑘) · (𝑏↑𝑘))))‘𝑧)) ∈ dom ⇝ }, ℝ*,
< )) / 2), ((abs‘𝑥) + 1))) / 2)) |
111 | 1, 49, 62, 79, 3, 92, 110 | pserdv2 24184 |
. . 3
⊢ (𝜑 → (ℂ D 𝑃) = (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
112 | | cnvimass 5485 |
. . . . . . . 8
⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs |
113 | 3, 112 | eqsstri 3635 |
. . . . . . 7
⊢ 𝐷 ⊆ dom
abs |
114 | | absf 14077 |
. . . . . . . 8
⊢
abs:ℂ⟶ℝ |
115 | 114 | fdmi 6052 |
. . . . . . 7
⊢ dom abs =
ℂ |
116 | 113, 115 | sseqtri 3637 |
. . . . . 6
⊢ 𝐷 ⊆
ℂ |
117 | 116 | sseli 3599 |
. . . . 5
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ ℂ) |
118 | | binomcxplem.e |
. . . . . . . . . 10
⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
119 | 118 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))))) |
120 | | simplr 792 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → 𝑏 = 𝑦) |
121 | 120 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → (𝑏↑(𝑘 − 1)) = (𝑦↑(𝑘 − 1))) |
122 | 121 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) ∧ 𝑘 ∈ ℕ) → ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))) = ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1)))) |
123 | 122 | mpteq2dva 4744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑏 = 𝑦) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
124 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) |
125 | | nnex 11026 |
. . . . . . . . . . 11
⊢ ℕ
∈ V |
126 | 125 | mptex 6486 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V |
127 | 126 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1)))) ∈ V) |
128 | 119, 123,
124, 127 | fvmptd 6288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐸‘𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
129 | 128 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑦) = (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))))) |
130 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → 𝑘 = 𝑛) |
131 | 130 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝐹‘𝑘) = (𝐹‘𝑛)) |
132 | 130, 131 | oveq12d 6668 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 · (𝐹‘𝑘)) = (𝑛 · (𝐹‘𝑛))) |
133 | 130 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑘 − 1) = (𝑛 − 1)) |
134 | 133 | oveq2d 6666 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (𝑦↑(𝑘 − 1)) = (𝑦↑(𝑛 − 1))) |
135 | 132, 134 | oveq12d 6668 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ((𝑘 · (𝐹‘𝑘)) · (𝑦↑(𝑘 − 1))) = ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
136 | | simpr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
137 | | ovexd 6680 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1))) ∈ V) |
138 | 129, 135,
136, 137 | fvmptd 6288 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℂ) ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑦)‘𝑛) = ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
139 | 138 | sumeq2dv 14433 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
140 | 117, 139 | sylan2 491 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1)))) |
141 | 140 | mpteq2dva 4744 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛)) = (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝑛 · (𝐹‘𝑛)) · (𝑦↑(𝑛 − 1))))) |
142 | 111, 141 | eqtr4d 2659 |
. 2
⊢ (𝜑 → (ℂ D 𝑃) = (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛))) |
143 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑏ℕ |
144 | | nfmpt1 4747 |
. . . . . . 7
⊢
Ⅎ𝑏(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
145 | 118, 144 | nfcxfr 2762 |
. . . . . 6
⊢
Ⅎ𝑏𝐸 |
146 | 145, 27 | nffv 6198 |
. . . . 5
⊢
Ⅎ𝑏(𝐸‘𝑦) |
147 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑏𝑛 |
148 | 146, 147 | nffv 6198 |
. . . 4
⊢
Ⅎ𝑏((𝐸‘𝑦)‘𝑛) |
149 | 143, 148 | nfsum 14421 |
. . 3
⊢
Ⅎ𝑏Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) |
150 | | nfcv 2764 |
. . 3
⊢
Ⅎ𝑦Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘) |
151 | | simpl 473 |
. . . . . . 7
⊢ ((𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑏) |
152 | 151 | fveq2d 6195 |
. . . . . 6
⊢ ((𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ) → (𝐸‘𝑦) = (𝐸‘𝑏)) |
153 | 152 | fveq1d 6193 |
. . . . 5
⊢ ((𝑦 = 𝑏 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑦)‘𝑛) = ((𝐸‘𝑏)‘𝑛)) |
154 | 153 | sumeq2dv 14433 |
. . . 4
⊢ (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑛 ∈ ℕ ((𝐸‘𝑏)‘𝑛)) |
155 | | nfmpt1 4747 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1)))) |
156 | 37, 155 | nfmpt 4746 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) |
157 | 118, 156 | nfcxfr 2762 |
. . . . . . 7
⊢
Ⅎ𝑘𝐸 |
158 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑘𝑏 |
159 | 157, 158 | nffv 6198 |
. . . . . 6
⊢
Ⅎ𝑘(𝐸‘𝑏) |
160 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑘𝑛 |
161 | 159, 160 | nffv 6198 |
. . . . 5
⊢
Ⅎ𝑘((𝐸‘𝑏)‘𝑛) |
162 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑛((𝐸‘𝑏)‘𝑘) |
163 | | fveq2 6191 |
. . . . 5
⊢ (𝑛 = 𝑘 → ((𝐸‘𝑏)‘𝑛) = ((𝐸‘𝑏)‘𝑘)) |
164 | 161, 162,
163 | cbvsumi 14427 |
. . . 4
⊢
Σ𝑛 ∈
ℕ ((𝐸‘𝑏)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘) |
165 | 154, 164 | syl6eq 2672 |
. . 3
⊢ (𝑦 = 𝑏 → Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛) = Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘)) |
166 | 24, 23, 149, 150, 165 | cbvmptf 4748 |
. 2
⊢ (𝑦 ∈ 𝐷 ↦ Σ𝑛 ∈ ℕ ((𝐸‘𝑦)‘𝑛)) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘)) |
167 | 142, 166 | syl6eq 2672 |
1
⊢ (𝜑 → (ℂ D 𝑃) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘))) |