![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnfldnm | Structured version Visualization version GIF version |
Description: The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
cnfldnm | ⊢ abs = (norm‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 10032 | . . . . 5 ⊢ 0 ∈ ℂ | |
2 | eqid 2622 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
3 | 2 | cnmetdval 22574 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0))) |
4 | 1, 3 | mpan2 707 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥(abs ∘ − )0) = (abs‘(𝑥 − 0))) |
5 | subid1 10301 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 − 0) = 𝑥) | |
6 | 5 | fveq2d 6195 | . . . 4 ⊢ (𝑥 ∈ ℂ → (abs‘(𝑥 − 0)) = (abs‘𝑥)) |
7 | 4, 6 | eqtrd 2656 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥(abs ∘ − )0) = (abs‘𝑥)) |
8 | 7 | mpteq2ia 4740 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (𝑥(abs ∘ − )0)) = (𝑥 ∈ ℂ ↦ (abs‘𝑥)) |
9 | eqid 2622 | . . 3 ⊢ (norm‘ℂfld) = (norm‘ℂfld) | |
10 | cnfldbas 19750 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
11 | cnfld0 19770 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
12 | cnfldds 19756 | . . 3 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
13 | 9, 10, 11, 12 | nmfval 22393 | . 2 ⊢ (norm‘ℂfld) = (𝑥 ∈ ℂ ↦ (𝑥(abs ∘ − )0)) |
14 | absf 14077 | . . . . 5 ⊢ abs:ℂ⟶ℝ | |
15 | 14 | a1i 11 | . . . 4 ⊢ (⊤ → abs:ℂ⟶ℝ) |
16 | 15 | feqmptd 6249 | . . 3 ⊢ (⊤ → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) |
17 | 16 | trud 1493 | . 2 ⊢ abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥)) |
18 | 8, 13, 17 | 3eqtr4ri 2655 | 1 ⊢ abs = (norm‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 ↦ cmpt 4729 ∘ ccom 5118 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 − cmin 10266 abscabs 13974 ℂfldccnfld 19746 normcnm 22381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-starv 15956 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-cmn 18195 df-mgp 18490 df-ring 18549 df-cring 18550 df-cnfld 19747 df-nm 22387 |
This theorem is referenced by: cnngp 22583 cnnrg 22584 abscn 22649 clmabs 22883 isncvsngp 22949 cnnm 22960 cnncvsabsnegdemo 22965 tchcph 23036 zringnm 30004 cnzh 30014 rezh 30015 |
Copyright terms: Public domain | W3C validator |