Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noseponlem Structured version   Visualization version   Unicode version

Theorem noseponlem 31817
Description: Lemma for nosepon 31818. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
noseponlem  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem noseponlem
StepHypRef Expression
1 nodmon 31803 . . . 4  |-  ( A  e.  No  ->  dom  A  e.  On )
213ad2ant1 1082 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  dom  A  e.  On )
3 nodmord 31806 . . . . . . 7  |-  ( A  e.  No  ->  Ord  dom 
A )
4 ordirr 5741 . . . . . . 7  |-  ( Ord 
dom  A  ->  -.  dom  A  e.  dom  A )
53, 4syl 17 . . . . . 6  |-  ( A  e.  No  ->  -.  dom  A  e.  dom  A
)
653ad2ant1 1082 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  -.  dom  A  e. 
dom  A )
7 ndmfv 6218 . . . . 5  |-  ( -. 
dom  A  e.  dom  A  ->  ( A `  dom  A )  =  (/) )
86, 7syl 17 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  ( A `  dom  A )  =  (/) )
9 nosgnn0 31811 . . . . . . 7  |-  -.  (/)  e.  { 1o ,  2o }
10 elno3 31808 . . . . . . . . . . 11  |-  ( B  e.  No  <->  ( B : dom  B --> { 1o ,  2o }  /\  dom  B  e.  On ) )
1110simplbi 476 . . . . . . . . . 10  |-  ( B  e.  No  ->  B : dom  B --> { 1o ,  2o } )
12113ad2ant2 1083 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  B : dom  B --> { 1o ,  2o } )
13 simp3 1063 . . . . . . . . 9  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  dom  A  e.  dom  B )
1412, 13ffvelrnd 6360 . . . . . . . 8  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  ( B `  dom  A )  e.  { 1o ,  2o } )
15 eleq1 2689 . . . . . . . 8  |-  ( ( B `  dom  A
)  =  (/)  ->  (
( B `  dom  A )  e.  { 1o ,  2o }  <->  (/)  e.  { 1o ,  2o } ) )
1614, 15syl5ibcom 235 . . . . . . 7  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  ( ( B `
 dom  A )  =  (/)  ->  (/)  e.  { 1o ,  2o } ) )
179, 16mtoi 190 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  -.  ( B `  dom  A )  =  (/) )
1817neqned 2801 . . . . 5  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  ( B `  dom  A )  =/=  (/) )
1918necomd 2849 . . . 4  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  (/)  =/=  ( B `
 dom  A )
)
208, 19eqnetrd 2861 . . 3  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  ( A `  dom  A )  =/=  ( B `  dom  A ) )
21 fveq2 6191 . . . . 5  |-  ( x  =  dom  A  -> 
( A `  x
)  =  ( A `
 dom  A )
)
22 fveq2 6191 . . . . 5  |-  ( x  =  dom  A  -> 
( B `  x
)  =  ( B `
 dom  A )
)
2321, 22neeq12d 2855 . . . 4  |-  ( x  =  dom  A  -> 
( ( A `  x )  =/=  ( B `  x )  <->  ( A `  dom  A
)  =/=  ( B `
 dom  A )
) )
2423rspcev 3309 . . 3  |-  ( ( dom  A  e.  On  /\  ( A `  dom  A )  =/=  ( B `
 dom  A )
)  ->  E. x  e.  On  ( A `  x )  =/=  ( B `  x )
)
252, 20, 24syl2anc 693 . 2  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  E. x  e.  On  ( A `  x )  =/=  ( B `  x ) )
26 df-ne 2795 . . . 4  |-  ( ( A `  x )  =/=  ( B `  x )  <->  -.  ( A `  x )  =  ( B `  x ) )
2726rexbii 3041 . . 3  |-  ( E. x  e.  On  ( A `  x )  =/=  ( B `  x
)  <->  E. x  e.  On  -.  ( A `  x
)  =  ( B `
 x ) )
28 rexnal 2995 . . 3  |-  ( E. x  e.  On  -.  ( A `  x )  =  ( B `  x )  <->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
2927, 28bitri 264 . 2  |-  ( E. x  e.  On  ( A `  x )  =/=  ( B `  x
)  <->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
3025, 29sylib 208 1  |-  ( ( A  e.  No  /\  B  e.  No  /\  dom  A  e.  dom  B )  ->  -.  A. x  e.  On  ( A `  x )  =  ( B `  x ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   {cpr 4179   dom cdm 5114   Ord word 5722   Oncon0 5723   -->wf 5884   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796
This theorem is referenced by:  nosepon  31818
  Copyright terms: Public domain W3C validator