Proof of Theorem pcmpt2
| Step | Hyp | Ref
| Expression |
| 1 | | pcmpt.4 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 2 | | pcmpt.1 |
. . . . . . 7
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑𝐴), 1)) |
| 3 | | pcmpt.2 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ ℙ 𝐴 ∈
ℕ0) |
| 4 | 2, 3 | pcmptcl 15595 |
. . . . . 6
⊢ (𝜑 → (𝐹:ℕ⟶ℕ ∧ seq1( ·
, 𝐹):ℕ⟶ℕ)) |
| 5 | 4 | simprd 479 |
. . . . 5
⊢ (𝜑 → seq1( · , 𝐹):ℕ⟶ℕ) |
| 6 | | pcmpt.3 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 7 | | pcmpt2.6 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) |
| 8 | | eluznn 11758 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈
(ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 10 | 5, 9 | ffvelrnd 6360 |
. . . 4
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℕ) |
| 11 | 10 | nnzd 11481 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ∈ ℤ) |
| 12 | 10 | nnne0d 11065 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑀) ≠ 0) |
| 13 | 5, 6 | ffvelrnd 6360 |
. . 3
⊢ (𝜑 → (seq1( · , 𝐹)‘𝑁) ∈ ℕ) |
| 14 | | pcdiv 15557 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ ((seq1(
· , 𝐹)‘𝑀) ∈ ℤ ∧ (seq1(
· , 𝐹)‘𝑀) ≠ 0) ∧ (seq1( ·
, 𝐹)‘𝑁) ∈ ℕ) → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))) |
| 15 | 1, 11, 12, 13, 14 | syl121anc 1331 |
. 2
⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)))) |
| 16 | | pcmpt.5 |
. . . 4
⊢ (𝑛 = 𝑃 → 𝐴 = 𝐵) |
| 17 | 2, 3, 9, 1, 16 | pcmpt 15596 |
. . 3
⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) = if(𝑃 ≤ 𝑀, 𝐵, 0)) |
| 18 | 2, 3, 6, 1, 16 | pcmpt 15596 |
. . 3
⊢ (𝜑 → (𝑃 pCnt (seq1( · , 𝐹)‘𝑁)) = if(𝑃 ≤ 𝑁, 𝐵, 0)) |
| 19 | 17, 18 | oveq12d 6668 |
. 2
⊢ (𝜑 → ((𝑃 pCnt (seq1( · , 𝐹)‘𝑀)) − (𝑃 pCnt (seq1( · , 𝐹)‘𝑁))) = (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0))) |
| 20 | 16 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑛 = 𝑃 → (𝐴 ∈ ℕ0 ↔ 𝐵 ∈
ℕ0)) |
| 21 | 20 | rspcv 3305 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ →
(∀𝑛 ∈ ℙ
𝐴 ∈
ℕ0 → 𝐵 ∈
ℕ0)) |
| 22 | 1, 3, 21 | sylc 65 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℕ0) |
| 23 | 22 | nn0cnd 11353 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 24 | 23 | subidd 10380 |
. . . . 5
⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
| 25 | 24 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → (𝐵 − 𝐵) = 0) |
| 26 | | prmnn 15388 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 27 | 1, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 28 | 27 | nnred 11035 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 29 | 28 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑃 ∈ ℝ) |
| 30 | 6 | nnred 11035 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 31 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑁 ∈ ℝ) |
| 32 | 9 | nnred 11035 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 33 | 32 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑀 ∈ ℝ) |
| 34 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑃 ≤ 𝑁) |
| 35 | | eluzle 11700 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝑀) |
| 36 | 7, 35 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ≤ 𝑀) |
| 37 | 36 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑁 ≤ 𝑀) |
| 38 | 29, 31, 33, 34, 37 | letrd 10194 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → 𝑃 ≤ 𝑀) |
| 39 | 38 | iftrued 4094 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → if(𝑃 ≤ 𝑀, 𝐵, 0) = 𝐵) |
| 40 | | iftrue 4092 |
. . . . . 6
⊢ (𝑃 ≤ 𝑁 → if(𝑃 ≤ 𝑁, 𝐵, 0) = 𝐵) |
| 41 | 40 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → if(𝑃 ≤ 𝑁, 𝐵, 0) = 𝐵) |
| 42 | 39, 41 | oveq12d 6668 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = (𝐵 − 𝐵)) |
| 43 | | simpr 477 |
. . . . . 6
⊢ ((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁) → ¬ 𝑃 ≤ 𝑁) |
| 44 | 43, 34 | nsyl3 133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → ¬ (𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁)) |
| 45 | 44 | iffalsed 4097 |
. . . 4
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0) = 0) |
| 46 | 25, 42, 45 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |
| 47 | | iffalse 4095 |
. . . . . 6
⊢ (¬
𝑃 ≤ 𝑁 → if(𝑃 ≤ 𝑁, 𝐵, 0) = 0) |
| 48 | 47 | oveq2d 6666 |
. . . . 5
⊢ (¬
𝑃 ≤ 𝑁 → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = (if(𝑃 ≤ 𝑀, 𝐵, 0) − 0)) |
| 49 | | 0cn 10032 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 50 | | ifcl 4130 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 0 ∈
ℂ) → if(𝑃 ≤
𝑀, 𝐵, 0) ∈ ℂ) |
| 51 | 23, 49, 50 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → if(𝑃 ≤ 𝑀, 𝐵, 0) ∈ ℂ) |
| 52 | 51 | subid1d 10381 |
. . . . 5
⊢ (𝜑 → (if(𝑃 ≤ 𝑀, 𝐵, 0) − 0) = if(𝑃 ≤ 𝑀, 𝐵, 0)) |
| 53 | 48, 52 | sylan9eqr 2678 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if(𝑃 ≤ 𝑀, 𝐵, 0)) |
| 54 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → ¬ 𝑃 ≤ 𝑁) |
| 55 | 54 | biantrud 528 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → (𝑃 ≤ 𝑀 ↔ (𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁))) |
| 56 | 55 | ifbid 4108 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → if(𝑃 ≤ 𝑀, 𝐵, 0) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |
| 57 | 53, 56 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑃 ≤ 𝑁) → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |
| 58 | 46, 57 | pm2.61dan 832 |
. 2
⊢ (𝜑 → (if(𝑃 ≤ 𝑀, 𝐵, 0) − if(𝑃 ≤ 𝑁, 𝐵, 0)) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |
| 59 | 15, 19, 58 | 3eqtrd 2660 |
1
⊢ (𝜑 → (𝑃 pCnt ((seq1( · , 𝐹)‘𝑀) / (seq1( · , 𝐹)‘𝑁))) = if((𝑃 ≤ 𝑀 ∧ ¬ 𝑃 ≤ 𝑁), 𝐵, 0)) |