![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > osumcllem4N | Structured version Visualization version GIF version |
Description: Lemma for osumclN 35253. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osumcllem.l | ⊢ ≤ = (le‘𝐾) |
osumcllem.j | ⊢ ∨ = (join‘𝐾) |
osumcllem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
osumcllem.p | ⊢ + = (+𝑃‘𝐾) |
osumcllem.o | ⊢ ⊥ = (⊥𝑃‘𝐾) |
osumcllem.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
osumcllem.m | ⊢ 𝑀 = (𝑋 + {𝑝}) |
osumcllem.u | ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) |
Ref | Expression |
---|---|
osumcllem4N | ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 3920 | . . 3 ⊢ (𝑟 ∈ (𝑋 ∩ 𝑌) → ¬ (𝑋 ∩ 𝑌) = ∅) | |
2 | incom 3805 | . . . . . . 7 ⊢ (𝑋 ∩ 𝑌) = (𝑌 ∩ 𝑋) | |
3 | sslin 3839 | . . . . . . . 8 ⊢ (𝑋 ⊆ ( ⊥ ‘𝑌) → (𝑌 ∩ 𝑋) ⊆ (𝑌 ∩ ( ⊥ ‘𝑌))) | |
4 | 3 | 3ad2ant3 1084 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑌 ∩ 𝑋) ⊆ (𝑌 ∩ ( ⊥ ‘𝑌))) |
5 | 2, 4 | syl5eqss 3649 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ∩ 𝑌) ⊆ (𝑌 ∩ ( ⊥ ‘𝑌))) |
6 | osumcllem.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | osumcllem.o | . . . . . . . 8 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
8 | 6, 7 | pnonsingN 35219 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴) → (𝑌 ∩ ( ⊥ ‘𝑌)) = ∅) |
9 | 8 | 3adant3 1081 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑌 ∩ ( ⊥ ‘𝑌)) = ∅) |
10 | 5, 9 | sseqtrd 3641 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ∩ 𝑌) ⊆ ∅) |
11 | ss0b 3973 | . . . . 5 ⊢ ((𝑋 ∩ 𝑌) ⊆ ∅ ↔ (𝑋 ∩ 𝑌) = ∅) | |
12 | 10, 11 | sylib 208 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (𝑋 ∩ 𝑌) = ∅) |
13 | 12 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑋 ∩ 𝑌) = ∅) |
14 | 1, 13 | nsyl3 133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → ¬ 𝑟 ∈ (𝑋 ∩ 𝑌)) |
15 | simprr 796 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ∈ 𝑌) | |
16 | eleq1 2689 | . . . . . 6 ⊢ (𝑞 = 𝑟 → (𝑞 ∈ 𝑌 ↔ 𝑟 ∈ 𝑌)) | |
17 | 15, 16 | syl5ibcom 235 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑞 = 𝑟 → 𝑟 ∈ 𝑌)) |
18 | simprl 794 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑟 ∈ 𝑋) | |
19 | 17, 18 | jctild 566 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑞 = 𝑟 → (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌))) |
20 | elin 3796 | . . . 4 ⊢ (𝑟 ∈ (𝑋 ∩ 𝑌) ↔ (𝑟 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌)) | |
21 | 19, 20 | syl6ibr 242 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (𝑞 = 𝑟 → 𝑟 ∈ (𝑋 ∩ 𝑌))) |
22 | 21 | necon3bd 2808 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → (¬ 𝑟 ∈ (𝑋 ∩ 𝑌) → 𝑞 ≠ 𝑟)) |
23 | 14, 22 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 {csn 4177 ‘cfv 5888 (class class class)co 6650 lecple 15948 joincjn 16944 Atomscatm 34550 HLchlt 34637 +𝑃cpadd 35081 ⊥𝑃cpolN 35188 PSubClcpscN 35220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-undef 7399 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-pmap 34790 df-polarityN 35189 |
This theorem is referenced by: osumcllem6N 35247 |
Copyright terms: Public domain | W3C validator |