Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  osumcllem4N Structured version   Visualization version   GIF version

Theorem osumcllem4N 35245
Description: Lemma for osumclN 35253. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
osumcllem.l = (le‘𝐾)
osumcllem.j = (join‘𝐾)
osumcllem.a 𝐴 = (Atoms‘𝐾)
osumcllem.p + = (+𝑃𝐾)
osumcllem.o = (⊥𝑃𝐾)
osumcllem.c 𝐶 = (PSubCl‘𝐾)
osumcllem.m 𝑀 = (𝑋 + {𝑝})
osumcllem.u 𝑈 = ( ‘( ‘(𝑋 + 𝑌)))
Assertion
Ref Expression
osumcllem4N (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)

Proof of Theorem osumcllem4N
StepHypRef Expression
1 n0i 3920 . . 3 (𝑟 ∈ (𝑋𝑌) → ¬ (𝑋𝑌) = ∅)
2 incom 3805 . . . . . . 7 (𝑋𝑌) = (𝑌𝑋)
3 sslin 3839 . . . . . . . 8 (𝑋 ⊆ ( 𝑌) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
433ad2ant3 1084 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌𝑋) ⊆ (𝑌 ∩ ( 𝑌)))
52, 4syl5eqss 3649 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ (𝑌 ∩ ( 𝑌)))
6 osumcllem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
7 osumcllem.o . . . . . . . 8 = (⊥𝑃𝐾)
86, 7pnonsingN 35219 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐴) → (𝑌 ∩ ( 𝑌)) = ∅)
983adant3 1081 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑌 ∩ ( 𝑌)) = ∅)
105, 9sseqtrd 3641 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) ⊆ ∅)
11 ss0b 3973 . . . . 5 ((𝑋𝑌) ⊆ ∅ ↔ (𝑋𝑌) = ∅)
1210, 11sylib 208 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (𝑋𝑌) = ∅)
1312adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑋𝑌) = ∅)
141, 13nsyl3 133 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → ¬ 𝑟 ∈ (𝑋𝑌))
15 simprr 796 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑌)
16 eleq1 2689 . . . . . 6 (𝑞 = 𝑟 → (𝑞𝑌𝑟𝑌))
1715, 16syl5ibcom 235 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟𝑌))
18 simprl 794 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑟𝑋)
1917, 18jctild 566 . . . 4 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟 → (𝑟𝑋𝑟𝑌)))
20 elin 3796 . . . 4 (𝑟 ∈ (𝑋𝑌) ↔ (𝑟𝑋𝑟𝑌))
2119, 20syl6ibr 242 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (𝑞 = 𝑟𝑟 ∈ (𝑋𝑌)))
2221necon3bd 2808 . 2 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → (¬ 𝑟 ∈ (𝑋𝑌) → 𝑞𝑟))
2314, 22mpd 15 1 (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cin 3573  wss 3574  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  lecple 15948  joincjn 16944  Atomscatm 34550  HLchlt 34637  +𝑃cpadd 35081  𝑃cpolN 35188  PSubClcpscN 35220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-undef 7399  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-pmap 34790  df-polarityN 35189
This theorem is referenced by:  osumcllem6N  35247
  Copyright terms: Public domain W3C validator