| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsk4 | Structured version Visualization version Unicode version | ||
| Description: Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.) |
| Ref | Expression |
|---|---|
| ntrcls.o |
|
| ntrcls.d |
|
| ntrcls.r |
|
| Ref | Expression |
|---|---|
| ntrclsk4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . 5
| |
| 2 | 1 | fveq2d 6195 |
. . . 4
|
| 3 | 2, 1 | eqeq12d 2637 |
. . 3
|
| 4 | 3 | cbvralv 3171 |
. 2
|
| 5 | ntrcls.d |
. . . . 5
| |
| 6 | ntrcls.r |
. . . . 5
| |
| 7 | 5, 6 | ntrclsrcomplex 38333 |
. . . 4
|
| 8 | 7 | adantr 481 |
. . 3
|
| 9 | 5, 6 | ntrclsrcomplex 38333 |
. . . . 5
|
| 10 | 9 | adantr 481 |
. . . 4
|
| 11 | difeq2 3722 |
. . . . . 6
| |
| 12 | 11 | eqeq2d 2632 |
. . . . 5
|
| 13 | 12 | adantl 482 |
. . . 4
|
| 14 | elpwi 4168 |
. . . . . . 7
| |
| 15 | dfss4 3858 |
. . . . . . 7
| |
| 16 | 14, 15 | sylib 208 |
. . . . . 6
|
| 17 | 16 | eqcomd 2628 |
. . . . 5
|
| 18 | 17 | adantl 482 |
. . . 4
|
| 19 | 10, 13, 18 | rspcedvd 3317 |
. . 3
|
| 20 | fveq2 6191 |
. . . . . . 7
| |
| 21 | 20 | fveq2d 6195 |
. . . . . 6
|
| 22 | 21, 20 | eqeq12d 2637 |
. . . . 5
|
| 23 | 22 | 3ad2ant3 1084 |
. . . 4
|
| 24 | ntrcls.o |
. . . . . . . . . . . 12
| |
| 25 | 24, 5, 6 | ntrclsiex 38351 |
. . . . . . . . . . 11
|
| 26 | elmapi 7879 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . 10
|
| 28 | 27, 7 | ffvelrnd 6360 |
. . . . . . . . . 10
|
| 29 | 27, 28 | ffvelrnd 6360 |
. . . . . . . . 9
|
| 30 | 29 | elpwid 4170 |
. . . . . . . 8
|
| 31 | 28 | elpwid 4170 |
. . . . . . . 8
|
| 32 | rcompleq 38318 |
. . . . . . . 8
| |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . . . 7
|
| 34 | 33 | adantr 481 |
. . . . . 6
|
| 35 | 24, 5, 6 | ntrclsnvobr 38350 |
. . . . . . . . . 10
|
| 36 | 35 | adantr 481 |
. . . . . . . . 9
|
| 37 | 24, 5, 35 | ntrclsiex 38351 |
. . . . . . . . . . 11
|
| 38 | elmapi 7879 |
. . . . . . . . . . 11
| |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . 10
|
| 40 | 39 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 41 | 24, 5, 36, 40 | ntrclsfv 38357 |
. . . . . . . 8
|
| 42 | simpr 477 |
. . . . . . . . . . . . 13
| |
| 43 | 24, 5, 36, 42 | ntrclsfv 38357 |
. . . . . . . . . . . 12
|
| 44 | 43 | difeq2d 3728 |
. . . . . . . . . . 11
|
| 45 | dfss4 3858 |
. . . . . . . . . . . . 13
| |
| 46 | 31, 45 | sylib 208 |
. . . . . . . . . . . 12
|
| 47 | 46 | adantr 481 |
. . . . . . . . . . 11
|
| 48 | 44, 47 | eqtrd 2656 |
. . . . . . . . . 10
|
| 49 | 48 | fveq2d 6195 |
. . . . . . . . 9
|
| 50 | 49 | difeq2d 3728 |
. . . . . . . 8
|
| 51 | 41, 50 | eqtrd 2656 |
. . . . . . 7
|
| 52 | 51, 43 | eqeq12d 2637 |
. . . . . 6
|
| 53 | 34, 52 | bitr4d 271 |
. . . . 5
|
| 54 | 53 | 3adant3 1081 |
. . . 4
|
| 55 | 23, 54 | bitrd 268 |
. . 3
|
| 56 | 8, 19, 55 | ralxfrd2 4884 |
. 2
|
| 57 | 4, 56 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |