Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk4 Structured version   Visualization version   Unicode version

Theorem ntrclsk4 38370
Description: Idempotence of the interior function is equivalent to idempotence of the closure function. (Contributed by RP, 10-Jul-2021.)
Hypotheses
Ref Expression
ntrcls.o  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
ntrcls.d  |-  D  =  ( O `  B
)
ntrcls.r  |-  ( ph  ->  I D K )
Assertion
Ref Expression
ntrclsk4  |-  ( ph  ->  ( A. s  e. 
~P  B ( I `
 ( I `  s ) )  =  ( I `  s
)  <->  A. s  e.  ~P  B ( K `  ( K `  s ) )  =  ( K `
 s ) ) )
Distinct variable groups:    B, i,
j, k, s    j, I, k, s    j, K    ph, i, j, k, s
Allowed substitution hints:    D( i, j, k, s)    I( i)    K( i, k, s)    O( i, j, k, s)

Proof of Theorem ntrclsk4
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5  |-  ( s  =  t  ->  (
I `  s )  =  ( I `  t ) )
21fveq2d 6195 . . . 4  |-  ( s  =  t  ->  (
I `  ( I `  s ) )  =  ( I `  (
I `  t )
) )
32, 1eqeq12d 2637 . . 3  |-  ( s  =  t  ->  (
( I `  (
I `  s )
)  =  ( I `
 s )  <->  ( I `  ( I `  t
) )  =  ( I `  t ) ) )
43cbvralv 3171 . 2  |-  ( A. s  e.  ~P  B
( I `  (
I `  s )
)  =  ( I `
 s )  <->  A. t  e.  ~P  B ( I `
 ( I `  t ) )  =  ( I `  t
) )
5 ntrcls.d . . . . 5  |-  D  =  ( O `  B
)
6 ntrcls.r . . . . 5  |-  ( ph  ->  I D K )
75, 6ntrclsrcomplex 38333 . . . 4  |-  ( ph  ->  ( B  \  s
)  e.  ~P B
)
87adantr 481 . . 3  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  s )  e. 
~P B )
95, 6ntrclsrcomplex 38333 . . . . 5  |-  ( ph  ->  ( B  \  t
)  e.  ~P B
)
109adantr 481 . . . 4  |-  ( (
ph  /\  t  e.  ~P B )  ->  ( B  \  t )  e. 
~P B )
11 difeq2 3722 . . . . . 6  |-  ( s  =  ( B  \ 
t )  ->  ( B  \  s )  =  ( B  \  ( B  \  t ) ) )
1211eqeq2d 2632 . . . . 5  |-  ( s  =  ( B  \ 
t )  ->  (
t  =  ( B 
\  s )  <->  t  =  ( B  \  ( B  \  t ) ) ) )
1312adantl 482 . . . 4  |-  ( ( ( ph  /\  t  e.  ~P B )  /\  s  =  ( B  \  t ) )  -> 
( t  =  ( B  \  s )  <-> 
t  =  ( B 
\  ( B  \ 
t ) ) ) )
14 elpwi 4168 . . . . . . 7  |-  ( t  e.  ~P B  -> 
t  C_  B )
15 dfss4 3858 . . . . . . 7  |-  ( t 
C_  B  <->  ( B  \  ( B  \  t
) )  =  t )
1614, 15sylib 208 . . . . . 6  |-  ( t  e.  ~P B  -> 
( B  \  ( B  \  t ) )  =  t )
1716eqcomd 2628 . . . . 5  |-  ( t  e.  ~P B  -> 
t  =  ( B 
\  ( B  \ 
t ) ) )
1817adantl 482 . . . 4  |-  ( (
ph  /\  t  e.  ~P B )  ->  t  =  ( B  \ 
( B  \  t
) ) )
1910, 13, 18rspcedvd 3317 . . 3  |-  ( (
ph  /\  t  e.  ~P B )  ->  E. s  e.  ~P  B t  =  ( B  \  s
) )
20 fveq2 6191 . . . . . . 7  |-  ( t  =  ( B  \ 
s )  ->  (
I `  t )  =  ( I `  ( B  \  s
) ) )
2120fveq2d 6195 . . . . . 6  |-  ( t  =  ( B  \ 
s )  ->  (
I `  ( I `  t ) )  =  ( I `  (
I `  ( B  \  s ) ) ) )
2221, 20eqeq12d 2637 . . . . 5  |-  ( t  =  ( B  \ 
s )  ->  (
( I `  (
I `  t )
)  =  ( I `
 t )  <->  ( I `  ( I `  ( B  \  s ) ) )  =  ( I `
 ( B  \ 
s ) ) ) )
23223ad2ant3 1084 . . . 4  |-  ( (
ph  /\  s  e.  ~P B  /\  t  =  ( B  \ 
s ) )  -> 
( ( I `  ( I `  t
) )  =  ( I `  t )  <-> 
( I `  (
I `  ( B  \  s ) ) )  =  ( I `  ( B  \  s
) ) ) )
24 ntrcls.o . . . . . . . . . . . 12  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
2524, 5, 6ntrclsiex 38351 . . . . . . . . . . 11  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
26 elmapi 7879 . . . . . . . . . . 11  |-  ( I  e.  ( ~P B  ^m  ~P B )  ->  I : ~P B --> ~P B
)
2725, 26syl 17 . . . . . . . . . 10  |-  ( ph  ->  I : ~P B --> ~P B )
2827, 7ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( I `  ( B  \  s ) )  e.  ~P B )
2927, 28ffvelrnd 6360 . . . . . . . . 9  |-  ( ph  ->  ( I `  (
I `  ( B  \  s ) ) )  e.  ~P B )
3029elpwid 4170 . . . . . . . 8  |-  ( ph  ->  ( I `  (
I `  ( B  \  s ) ) ) 
C_  B )
3128elpwid 4170 . . . . . . . 8  |-  ( ph  ->  ( I `  ( B  \  s ) ) 
C_  B )
32 rcompleq 38318 . . . . . . . 8  |-  ( ( ( I `  (
I `  ( B  \  s ) ) ) 
C_  B  /\  (
I `  ( B  \  s ) )  C_  B )  ->  (
( I `  (
I `  ( B  \  s ) ) )  =  ( I `  ( B  \  s
) )  <->  ( B  \  ( I `  (
I `  ( B  \  s ) ) ) )  =  ( B 
\  ( I `  ( B  \  s
) ) ) ) )
3330, 31, 32syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( I `  ( I `  ( B  \  s ) ) )  =  ( I `
 ( B  \ 
s ) )  <->  ( B  \  ( I `  (
I `  ( B  \  s ) ) ) )  =  ( B 
\  ( I `  ( B  \  s
) ) ) ) )
3433adantr 481 . . . . . 6  |-  ( (
ph  /\  s  e.  ~P B )  ->  (
( I `  (
I `  ( B  \  s ) ) )  =  ( I `  ( B  \  s
) )  <->  ( B  \  ( I `  (
I `  ( B  \  s ) ) ) )  =  ( B 
\  ( I `  ( B  \  s
) ) ) ) )
3524, 5, 6ntrclsnvobr 38350 . . . . . . . . . 10  |-  ( ph  ->  K D I )
3635adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ~P B )  ->  K D I )
3724, 5, 35ntrclsiex 38351 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ( ~P B  ^m  ~P B
) )
38 elmapi 7879 . . . . . . . . . . 11  |-  ( K  e.  ( ~P B  ^m  ~P B )  ->  K : ~P B --> ~P B
)
3937, 38syl 17 . . . . . . . . . 10  |-  ( ph  ->  K : ~P B --> ~P B )
4039ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( K `  s )  e.  ~P B )
4124, 5, 36, 40ntrclsfv 38357 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( K `  ( K `  s ) )  =  ( B  \  (
I `  ( B  \  ( K `  s
) ) ) ) )
42 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  s  e.  ~P B )  ->  s  e.  ~P B )
4324, 5, 36, 42ntrclsfv 38357 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( K `  s )  =  ( B  \ 
( I `  ( B  \  s ) ) ) )
4443difeq2d 3728 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  ( K `  s ) )  =  ( B  \  ( B  \  ( I `  ( B  \  s
) ) ) ) )
45 dfss4 3858 . . . . . . . . . . . . 13  |-  ( ( I `  ( B 
\  s ) ) 
C_  B  <->  ( B  \  ( B  \  (
I `  ( B  \  s ) ) ) )  =  ( I `
 ( B  \ 
s ) ) )
4631, 45sylib 208 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  \  ( B  \  ( I `  ( B  \  s
) ) ) )  =  ( I `  ( B  \  s
) ) )
4746adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  ( B  \ 
( I `  ( B  \  s ) ) ) )  =  ( I `  ( B 
\  s ) ) )
4844, 47eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  ( K `  s ) )  =  ( I `  ( B  \  s ) ) )
4948fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  ~P B )  ->  (
I `  ( B  \  ( K `  s
) ) )  =  ( I `  (
I `  ( B  \  s ) ) ) )
5049difeq2d 3728 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  ( I `  ( B  \  ( K `  s )
) ) )  =  ( B  \  (
I `  ( I `  ( B  \  s
) ) ) ) )
5141, 50eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( K `  ( K `  s ) )  =  ( B  \  (
I `  ( I `  ( B  \  s
) ) ) ) )
5251, 43eqeq12d 2637 . . . . . 6  |-  ( (
ph  /\  s  e.  ~P B )  ->  (
( K `  ( K `  s )
)  =  ( K `
 s )  <->  ( B  \  ( I `  (
I `  ( B  \  s ) ) ) )  =  ( B 
\  ( I `  ( B  \  s
) ) ) ) )
5334, 52bitr4d 271 . . . . 5  |-  ( (
ph  /\  s  e.  ~P B )  ->  (
( I `  (
I `  ( B  \  s ) ) )  =  ( I `  ( B  \  s
) )  <->  ( K `  ( K `  s
) )  =  ( K `  s ) ) )
54533adant3 1081 . . . 4  |-  ( (
ph  /\  s  e.  ~P B  /\  t  =  ( B  \ 
s ) )  -> 
( ( I `  ( I `  ( B  \  s ) ) )  =  ( I `
 ( B  \ 
s ) )  <->  ( K `  ( K `  s
) )  =  ( K `  s ) ) )
5523, 54bitrd 268 . . 3  |-  ( (
ph  /\  s  e.  ~P B  /\  t  =  ( B  \ 
s ) )  -> 
( ( I `  ( I `  t
) )  =  ( I `  t )  <-> 
( K `  ( K `  s )
)  =  ( K `
 s ) ) )
568, 19, 55ralxfrd2 4884 . 2  |-  ( ph  ->  ( A. t  e. 
~P  B ( I `
 ( I `  t ) )  =  ( I `  t
)  <->  A. s  e.  ~P  B ( K `  ( K `  s ) )  =  ( K `
 s ) ) )
574, 56syl5bb 272 1  |-  ( ph  ->  ( A. s  e. 
~P  B ( I `
 ( I `  s ) )  =  ( I `  s
)  <->  A. s  e.  ~P  B ( K `  ( K `  s ) )  =  ( K `
 s ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator