Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsneine0lem Structured version   Visualization version   Unicode version

Theorem ntrclsneine0lem 38362
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrcls.o  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
ntrcls.d  |-  D  =  ( O `  B
)
ntrcls.r  |-  ( ph  ->  I D K )
ntrclslem0.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
ntrclsneine0lem  |-  ( ph  ->  ( E. s  e. 
~P  B X  e.  ( I `  s
)  <->  E. s  e.  ~P  B  -.  X  e.  ( K `  s ) ) )
Distinct variable groups:    B, i,
j, k, s    j, I, k, s    X, s    ph, i, j, k, s
Allowed substitution hints:    D( i, j, k, s)    I( i)    K( i, j, k, s)    O( i, j, k, s)    X( i, j, k)

Proof of Theorem ntrclsneine0lem
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( s  =  t  ->  (
I `  s )  =  ( I `  t ) )
21eleq2d 2687 . . 3  |-  ( s  =  t  ->  ( X  e.  ( I `  s )  <->  X  e.  ( I `  t
) ) )
32cbvrexv 3172 . 2  |-  ( E. s  e.  ~P  B X  e.  ( I `  s )  <->  E. t  e.  ~P  B X  e.  ( I `  t
) )
4 ntrcls.d . . . . 5  |-  D  =  ( O `  B
)
5 ntrcls.r . . . . 5  |-  ( ph  ->  I D K )
64, 5ntrclsrcomplex 38333 . . . 4  |-  ( ph  ->  ( B  \  s
)  e.  ~P B
)
76adantr 481 . . 3  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( B  \  s )  e. 
~P B )
84, 5ntrclsrcomplex 38333 . . . . 5  |-  ( ph  ->  ( B  \  t
)  e.  ~P B
)
98adantr 481 . . . 4  |-  ( (
ph  /\  t  e.  ~P B )  ->  ( B  \  t )  e. 
~P B )
10 difeq2 3722 . . . . . 6  |-  ( s  =  ( B  \ 
t )  ->  ( B  \  s )  =  ( B  \  ( B  \  t ) ) )
1110adantl 482 . . . . 5  |-  ( ( ( ph  /\  t  e.  ~P B )  /\  s  =  ( B  \  t ) )  -> 
( B  \  s
)  =  ( B 
\  ( B  \ 
t ) ) )
12 elpwi 4168 . . . . . . 7  |-  ( t  e.  ~P B  -> 
t  C_  B )
13 dfss4 3858 . . . . . . 7  |-  ( t 
C_  B  <->  ( B  \  ( B  \  t
) )  =  t )
1412, 13sylib 208 . . . . . 6  |-  ( t  e.  ~P B  -> 
( B  \  ( B  \  t ) )  =  t )
1514ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  t  e.  ~P B )  /\  s  =  ( B  \  t ) )  -> 
( B  \  ( B  \  t ) )  =  t )
1611, 15eqtr2d 2657 . . . 4  |-  ( ( ( ph  /\  t  e.  ~P B )  /\  s  =  ( B  \  t ) )  -> 
t  =  ( B 
\  s ) )
179, 16rspcedeq2vd 3319 . . 3  |-  ( (
ph  /\  t  e.  ~P B )  ->  E. s  e.  ~P  B t  =  ( B  \  s
) )
18 fveq2 6191 . . . . . 6  |-  ( t  =  ( B  \ 
s )  ->  (
I `  t )  =  ( I `  ( B  \  s
) ) )
1918eleq2d 2687 . . . . 5  |-  ( t  =  ( B  \ 
s )  ->  ( X  e.  ( I `  t )  <->  X  e.  ( I `  ( B  \  s ) ) ) )
20193ad2ant3 1084 . . . 4  |-  ( (
ph  /\  s  e.  ~P B  /\  t  =  ( B  \ 
s ) )  -> 
( X  e.  ( I `  t )  <-> 
X  e.  ( I `
 ( B  \ 
s ) ) ) )
21 ntrcls.o . . . . . 6  |-  O  =  ( i  e.  _V  |->  ( k  e.  ( ~P i  ^m  ~P i )  |->  ( j  e.  ~P i  |->  ( i  \  ( k `
 ( i  \ 
j ) ) ) ) ) )
225adantr 481 . . . . . 6  |-  ( (
ph  /\  s  e.  ~P B )  ->  I D K )
23 ntrclslem0.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
2423adantr 481 . . . . . 6  |-  ( (
ph  /\  s  e.  ~P B )  ->  X  e.  B )
25 simpr 477 . . . . . 6  |-  ( (
ph  /\  s  e.  ~P B )  ->  s  e.  ~P B )
2621, 4, 22, 24, 25ntrclselnel2 38356 . . . . 5  |-  ( (
ph  /\  s  e.  ~P B )  ->  ( X  e.  ( I `  ( B  \  s
) )  <->  -.  X  e.  ( K `  s
) ) )
27263adant3 1081 . . . 4  |-  ( (
ph  /\  s  e.  ~P B  /\  t  =  ( B  \ 
s ) )  -> 
( X  e.  ( I `  ( B 
\  s ) )  <->  -.  X  e.  ( K `  s )
) )
2820, 27bitrd 268 . . 3  |-  ( (
ph  /\  s  e.  ~P B  /\  t  =  ( B  \ 
s ) )  -> 
( X  e.  ( I `  t )  <->  -.  X  e.  ( K `  s )
) )
297, 17, 28rexxfrd2 4885 . 2  |-  ( ph  ->  ( E. t  e. 
~P  B X  e.  ( I `  t
)  <->  E. s  e.  ~P  B  -.  X  e.  ( K `  s ) ) )
303, 29syl5bb 272 1  |-  ( ph  ->  ( E. s  e. 
~P  B X  e.  ( I `  s
)  <->  E. s  e.  ~P  B  -.  X  e.  ( K `  s ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  ntrclsneine0  38363
  Copyright terms: Public domain W3C validator