![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicls11 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneicls11 | ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑𝑚 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . . . . . 9 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . . . . 9 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneiiex 38374 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵)) |
5 | elmapi 7879 | . . . . . . . 8 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
7 | 0elpw 4834 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 𝐵 | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
9 | 6, 8 | ffvelrnd 6360 | . . . . . 6 ⊢ (𝜑 → (𝐼‘∅) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4170 | . . . . 5 ⊢ (𝜑 → (𝐼‘∅) ⊆ 𝐵) |
11 | reldisj 4020 | . . . . 5 ⊢ ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) |
13 | 12 | bicomd 213 | . . 3 ⊢ (𝜑 → ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ ((𝐼‘∅) ∩ 𝐵) = ∅)) |
14 | difid 3948 | . . . . 5 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
15 | 14 | sseq2i 3630 | . . . 4 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) ⊆ ∅) |
16 | ss0b 3973 | . . . 4 ⊢ ((𝐼‘∅) ⊆ ∅ ↔ (𝐼‘∅) = ∅) | |
17 | 15, 16 | bitri 264 | . . 3 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) = ∅) |
18 | disjr 4018 | . . 3 ⊢ (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅)) | |
19 | 13, 17, 18 | 3bitr3g 302 | . 2 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅))) |
20 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
21 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
22 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝒫 𝐵) |
23 | 1, 2, 20, 21, 22 | ntrneiel 38379 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘∅) ↔ ∅ ∈ (𝑁‘𝑥))) |
24 | 23 | notbid 308 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ∈ (𝐼‘∅) ↔ ¬ ∅ ∈ (𝑁‘𝑥))) |
25 | 24 | ralbidva 2985 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅) ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
26 | 19, 25 | bitrd 268 | 1 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 class class class wbr 4653 ↦ cmpt 4729 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ↑𝑚 cmap 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |