Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneicls11 Structured version   Visualization version   Unicode version

Theorem ntrneicls11 38388
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator,  F, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
ntrnei.f  |-  F  =  ( ~P B O B )
ntrnei.r  |-  ( ph  ->  I F N )
Assertion
Ref Expression
ntrneicls11  |-  ( ph  ->  ( ( I `  (/) )  =  (/)  <->  A. x  e.  B  -.  (/)  e.  ( N `  x ) ) )
Distinct variable groups:    B, i,
j, k, l, m, x    k, I, l, m, x    ph, i,
j, k, l, x
Allowed substitution hints:    ph( m)    F( x, i, j, k, m, l)    I( i, j)    N( x, i, j, k, m, l)    O( x, i, j, k, m, l)

Proof of Theorem ntrneicls11
StepHypRef Expression
1 ntrnei.o . . . . . . . . 9  |-  O  =  ( i  e.  _V ,  j  e.  _V  |->  ( k  e.  ( ~P j  ^m  i
)  |->  ( l  e.  j  |->  { m  e.  i  |  l  e.  ( k `  m
) } ) ) )
2 ntrnei.f . . . . . . . . 9  |-  F  =  ( ~P B O B )
3 ntrnei.r . . . . . . . . 9  |-  ( ph  ->  I F N )
41, 2, 3ntrneiiex 38374 . . . . . . . 8  |-  ( ph  ->  I  e.  ( ~P B  ^m  ~P B
) )
5 elmapi 7879 . . . . . . . 8  |-  ( I  e.  ( ~P B  ^m  ~P B )  ->  I : ~P B --> ~P B
)
64, 5syl 17 . . . . . . 7  |-  ( ph  ->  I : ~P B --> ~P B )
7 0elpw 4834 . . . . . . . 8  |-  (/)  e.  ~P B
87a1i 11 . . . . . . 7  |-  ( ph  -> 
(/)  e.  ~P B
)
96, 8ffvelrnd 6360 . . . . . 6  |-  ( ph  ->  ( I `  (/) )  e. 
~P B )
109elpwid 4170 . . . . 5  |-  ( ph  ->  ( I `  (/) )  C_  B )
11 reldisj 4020 . . . . 5  |-  ( ( I `  (/) )  C_  B  ->  ( ( ( I `  (/) )  i^i 
B )  =  (/)  <->  (
I `  (/) )  C_  ( B  \  B ) ) )
1210, 11syl 17 . . . 4  |-  ( ph  ->  ( ( ( I `
 (/) )  i^i  B
)  =  (/)  <->  ( I `  (/) )  C_  ( B  \  B ) ) )
1312bicomd 213 . . 3  |-  ( ph  ->  ( ( I `  (/) )  C_  ( B  \  B )  <->  ( (
I `  (/) )  i^i 
B )  =  (/) ) )
14 difid 3948 . . . . 5  |-  ( B 
\  B )  =  (/)
1514sseq2i 3630 . . . 4  |-  ( ( I `  (/) )  C_  ( B  \  B )  <-> 
( I `  (/) )  C_  (/) )
16 ss0b 3973 . . . 4  |-  ( ( I `  (/) )  C_  (/)  <->  ( I `  (/) )  =  (/) )
1715, 16bitri 264 . . 3  |-  ( ( I `  (/) )  C_  ( B  \  B )  <-> 
( I `  (/) )  =  (/) )
18 disjr 4018 . . 3  |-  ( ( ( I `  (/) )  i^i 
B )  =  (/)  <->  A. x  e.  B  -.  x  e.  ( I `  (/) ) )
1913, 17, 183bitr3g 302 . 2  |-  ( ph  ->  ( ( I `  (/) )  =  (/)  <->  A. x  e.  B  -.  x  e.  ( I `  (/) ) ) )
203adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  I F N )
21 simpr 477 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  x  e.  B )
227a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (/)  e.  ~P B )
231, 2, 20, 21, 22ntrneiel 38379 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  e.  ( I `
 (/) )  <->  (/)  e.  ( N `  x ) ) )
2423notbid 308 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( -.  x  e.  (
I `  (/) )  <->  -.  (/)  e.  ( N `  x ) ) )
2524ralbidva 2985 . 2  |-  ( ph  ->  ( A. x  e.  B  -.  x  e.  ( I `  (/) )  <->  A. x  e.  B  -.  (/)  e.  ( N `  x ) ) )
2619, 25bitrd 268 1  |-  ( ph  ->  ( ( I `  (/) )  =  (/)  <->  A. x  e.  B  -.  (/)  e.  ( N `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator