MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvtri Structured version   Visualization version   GIF version

Theorem nvtri 27525
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvtri.1 𝑋 = (BaseSet‘𝑈)
nvtri.2 𝐺 = ( +𝑣𝑈)
nvtri.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvtri ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))

Proof of Theorem nvtri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvtri.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
2 nvtri.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
3 eqid 2622 . . . . . . . . 9 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
43smfval 27460 . . . . . . . 8 ( ·𝑠OLD𝑈) = (2nd ‘(1st𝑈))
54eqcomi 2631 . . . . . . 7 (2nd ‘(1st𝑈)) = ( ·𝑠OLD𝑈)
6 eqid 2622 . . . . . . 7 (0vec𝑈) = (0vec𝑈)
7 nvtri.6 . . . . . . 7 𝑁 = (normCV𝑈)
81, 2, 5, 6, 7nvi 27469 . . . . . 6 (𝑈 ∈ NrmCVec → (⟨𝐺, (2nd ‘(1st𝑈))⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
98simp3d 1075 . . . . 5 (𝑈 ∈ NrmCVec → ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
10 simp3 1063 . . . . . 6 ((((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
1110ralimi 2952 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = (0vec𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦(2nd ‘(1st𝑈))𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
129, 11syl 17 . . . 4 (𝑈 ∈ NrmCVec → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 oveq1 6657 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
1413fveq2d 6195 . . . . . 6 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
15 fveq2 6191 . . . . . . 7 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
1615oveq1d 6665 . . . . . 6 (𝑥 = 𝐴 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝑦)))
1714, 16breq12d 4666 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦))))
18 oveq2 6658 . . . . . . 7 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1918fveq2d 6195 . . . . . 6 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
20 fveq2 6191 . . . . . . 7 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
2120oveq2d 6666 . . . . . 6 (𝑦 = 𝐵 → ((𝑁𝐴) + (𝑁𝑦)) = ((𝑁𝐴) + (𝑁𝐵)))
2219, 21breq12d 4666 . . . . 5 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦)) ≤ ((𝑁𝐴) + (𝑁𝑦)) ↔ (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2317, 22rspc2v 3322 . . . 4 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
2412, 23syl5 34 . . 3 ((𝐴𝑋𝐵𝑋) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵))))
25243impia 1261 . 2 ((𝐴𝑋𝐵𝑋𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
26253comr 1273 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) ≤ ((𝑁𝐴) + (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cop 4183   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  cc 9934  cr 9935  0cc0 9936   + caddc 9939   · cmul 9941  cle 10075  abscabs 13974  CVecOLDcvc 27413  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  0veccn0v 27443  normCVcnmcv 27445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455
This theorem is referenced by:  nvmtri  27526  nvabs  27527  nvge0  27528  imsmetlem  27545  vacn  27549
  Copyright terms: Public domain W3C validator