MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmetlem Structured version   Visualization version   GIF version

Theorem imsmetlem 27545
Description: Lemma for imsmet 27546. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmetlem.1 𝑋 = (BaseSet‘𝑈)
imsmetlem.2 𝐺 = ( +𝑣𝑈)
imsmetlem.7 𝑀 = (inv‘𝐺)
imsmetlem.4 𝑆 = ( ·𝑠OLD𝑈)
imsmetlem.5 𝑍 = (0vec𝑈)
imsmetlem.6 𝑁 = (normCV𝑈)
imsmetlem.8 𝐷 = (IndMet‘𝑈)
imsmetlem.9 𝑈 ∈ NrmCVec
Assertion
Ref Expression
imsmetlem 𝐷 ∈ (Met‘𝑋)

Proof of Theorem imsmetlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imsmetlem.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 fvex 6201 . . 3 (BaseSet‘𝑈) ∈ V
31, 2eqeltri 2697 . 2 𝑋 ∈ V
4 imsmetlem.9 . . 3 𝑈 ∈ NrmCVec
5 imsmetlem.8 . . . 4 𝐷 = (IndMet‘𝑈)
61, 5imsdf 27544 . . 3 (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)
74, 6ax-mp 5 . 2 𝐷:(𝑋 × 𝑋)⟶ℝ
8 imsmetlem.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
9 imsmetlem.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
10 imsmetlem.6 . . . . . 6 𝑁 = (normCV𝑈)
111, 8, 9, 10, 5imsdval2 27542 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
124, 11mp3an1 1411 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
1312eqeq1d 2624 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0))
14 neg1cn 11124 . . . . . 6 -1 ∈ ℂ
151, 9nvscl 27481 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
164, 14, 15mp3an12 1414 . . . . 5 (𝑦𝑋 → (-1𝑆𝑦) ∈ 𝑋)
171, 8nvgcl 27475 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
184, 17mp3an1 1411 . . . . 5 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
1916, 18sylan2 491 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
20 imsmetlem.5 . . . . 5 𝑍 = (0vec𝑈)
211, 20, 10nvz 27524 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
224, 19, 21sylancr 695 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
231, 20nvzcl 27489 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍𝑋)
244, 23ax-mp 5 . . . . . 6 𝑍𝑋
251, 8nvrcan 27479 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋)) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
264, 25mpan 706 . . . . . 6 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2724, 26mp3an2 1412 . . . . 5 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2819, 27sylancom 701 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
29 simpl 473 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑥𝑋)
3016adantl 482 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
31 simpr 477 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑦𝑋)
321, 8nvass 27477 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋)) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
334, 32mpan 706 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
3429, 30, 31, 33syl3anc 1326 . . . . . 6 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
351, 8, 9, 20nvlinv 27507 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
364, 35mpan 706 . . . . . . . 8 (𝑦𝑋 → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3736adantl 482 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3837oveq2d 6666 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)) = (𝑥𝐺𝑍))
391, 8, 20nv0rid 27490 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
404, 39mpan 706 . . . . . . 7 (𝑥𝑋 → (𝑥𝐺𝑍) = 𝑥)
4140adantr 481 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑍) = 𝑥)
4234, 38, 413eqtrd 2660 . . . . 5 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = 𝑥)
431, 8, 20nv0lid 27491 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
444, 43mpan 706 . . . . . 6 (𝑦𝑋 → (𝑍𝐺𝑦) = 𝑦)
4544adantl 482 . . . . 5 ((𝑥𝑋𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
4642, 45eqeq12d 2637 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ 𝑥 = 𝑦))
4728, 46bitr3d 270 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦)) = 𝑍𝑥 = 𝑦))
4813, 22, 473bitrd 294 . 2 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
49 simpr 477 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → 𝑥𝑋)
501, 9nvscl 27481 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑧𝑋) → (-1𝑆𝑧) ∈ 𝑋)
514, 14, 50mp3an12 1414 . . . . . . . 8 (𝑧𝑋 → (-1𝑆𝑧) ∈ 𝑋)
5251adantr 481 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (-1𝑆𝑧) ∈ 𝑋)
531, 8nvgcl 27475 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
544, 53mp3an1 1411 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
5549, 52, 54syl2anc 693 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
56553adant3 1081 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
571, 8nvgcl 27475 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
584, 57mp3an1 1411 . . . . . . 7 ((𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
5916, 58sylan2 491 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
60593adant2 1080 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
611, 8, 10nvtri 27525 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
624, 61mp3an1 1411 . . . . 5 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
6356, 60, 62syl2anc 693 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
64123adant1 1079 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
65 simp1 1061 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → 𝑧𝑋)
66163ad2ant3 1084 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
671, 8nvass 27477 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋)) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
684, 67mpan 706 . . . . . . . 8 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
6956, 65, 66, 68syl3anc 1326 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
70 simpl 473 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → 𝑧𝑋)
711, 8nvass 27477 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
724, 71mpan 706 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
7349, 52, 70, 72syl3anc 1326 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
741, 8, 9, 20nvlinv 27507 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
754, 74mpan 706 . . . . . . . . . . . 12 (𝑧𝑋 → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7675adantr 481 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7776oveq2d 6666 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)) = (𝑥𝐺𝑍))
7840adantl 482 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
7973, 77, 783eqtrd 2660 . . . . . . . . 9 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
80793adant3 1081 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
8180oveq1d 6665 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
8269, 81eqtr3d 2658 . . . . . 6 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))) = (𝑥𝐺(-1𝑆𝑦)))
8382fveq2d 6195 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
8464, 83eqtr4d 2659 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))))
851, 8, 9, 10, 5imsdval2 27542 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
864, 85mp3an1 1411 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
871, 8, 9, 10nvdif 27521 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
884, 87mp3an1 1411 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
8986, 88eqtrd 2656 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
90893adant3 1081 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
911, 8, 9, 10, 5imsdval2 27542 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
924, 91mp3an1 1411 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
93923adant2 1080 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
9490, 93oveq12d 6668 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
9563, 84, 943brtr4d 4685 . . 3 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
96953coml 1272 . 2 ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
973, 7, 48, 96ismeti 22130 1 𝐷 ∈ (Met‘𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653   × cxp 5112  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  -cneg 10267  Metcme 19732  invcgn 27345  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  0veccn0v 27443  normCVcnmcv 27445  IndMetcims 27446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-met 19740  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456
This theorem is referenced by:  imsmet  27546
  Copyright terms: Public domain W3C validator