MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvabs Structured version   Visualization version   GIF version

Theorem nvabs 27527
Description: Norm difference property of a normed complex vector space. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvabs.1 𝑋 = (BaseSet‘𝑈)
nvabs.2 𝐺 = ( +𝑣𝑈)
nvabs.4 𝑆 = ( ·𝑠OLD𝑈)
nvabs.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
nvabs ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))

Proof of Theorem nvabs
StepHypRef Expression
1 nvabs.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvabs.2 . . . . 5 𝐺 = ( +𝑣𝑈)
3 nvabs.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
4 nvabs.6 . . . . 5 𝑁 = (normCV𝑈)
51, 2, 3, 4nvdif 27521 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) = (𝑁‘(𝐵𝐺(-1𝑆𝐴))))
65negeqd 10275 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) = -(𝑁‘(𝐵𝐺(-1𝑆𝐴))))
71, 4nvcl 27516 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
873adant2 1080 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ ℝ)
91, 4nvcl 27516 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1093adant3 1081 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℝ)
11 simp1 1061 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝑈 ∈ NrmCVec)
12 neg1cn 11124 . . . . . . . . . 10 -1 ∈ ℂ
131, 3nvscl 27481 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
1412, 13mp3an2 1412 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
15143adant2 1080 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
161, 2nvgcl 27475 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
1715, 16syld3an3 1371 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
18173com23 1271 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋)
191, 4nvcl 27516 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2011, 18, 19syl2anc 693 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
2120renegcld 10457 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℝ)
221, 2nvcom 27476 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
2318, 22syld3an3 1371 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴))
24 simprr 796 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2514adantrr 753 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (-1𝑆𝐴) ∈ 𝑋)
26 simprl 794 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
2724, 25, 263jca 1242 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋))
281, 2nvass 27477 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐵𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐴𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
2927, 28syldan 487 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
30293impb 1260 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)))
31 eqid 2622 . . . . . . . . . . . 12 (0vec𝑈) = (0vec𝑈)
321, 2, 3, 31nvlinv 27507 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
33323adant3 1081 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (0vec𝑈))
3433oveq2d 6666 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((-1𝑆𝐴)𝐺𝐴)) = (𝐵𝐺(0vec𝑈)))
351, 2, 31nv0rid 27490 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
36353adant2 1080 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(0vec𝑈)) = 𝐵)
3730, 34, 363eqtrd 2660 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(-1𝑆𝐴))𝐺𝐴) = 𝐵)
3823, 37eqtrd 2656 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺(-1𝑆𝐴))) = 𝐵)
3938fveq2d 6195 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) = (𝑁𝐵))
401, 2, 4nvtri 27525 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (𝐵𝐺(-1𝑆𝐴)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4118, 40syld3an3 1371 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(𝐵𝐺(-1𝑆𝐴)))) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4239, 41eqbrtrrd 4677 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4310recnd 10068 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ ℂ)
4420recnd 10068 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐵𝐺(-1𝑆𝐴))) ∈ ℂ)
4543, 44subnegd 10399 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))) = ((𝑁𝐴) + (𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
4642, 45breqtrrd 4681 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ≤ ((𝑁𝐴) − -(𝑁‘(𝐵𝐺(-1𝑆𝐴)))))
478, 10, 21, 46lesubd 10631 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐵𝐺(-1𝑆𝐴))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
486, 47eqbrtrd 4675 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → -(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)))
49 simp2 1062 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
501, 3nvscl 27481 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
5112, 50mp3an2 1412 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
52513adant2 1080 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
53 simp3 1063 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
541, 2nvass 27477 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
5511, 49, 52, 53, 54syl13anc 1328 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)))
561, 2, 3, 31nvlinv 27507 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
57563adant2 1080 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((-1𝑆𝐵)𝐺𝐵) = (0vec𝑈))
5857oveq2d 6666 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺((-1𝑆𝐵)𝐺𝐵)) = (𝐴𝐺(0vec𝑈)))
591, 2, 31nv0rid 27490 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
60593adant3 1081 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(0vec𝑈)) = 𝐴)
6155, 58, 603eqtrd 2660 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐵) = 𝐴)
6261fveq2d 6195 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) = (𝑁𝐴))
631, 2nvgcl 27475 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
6452, 63syld3an3 1371 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
651, 2, 4nvtri 27525 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6664, 65syld3an2 1373 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐵)) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
6762, 66eqbrtrrd 4677 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵)))
681, 4nvcl 27516 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
6911, 64, 68syl2anc 693 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ∈ ℝ)
7010, 8, 69lesubaddd 10624 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (𝑁𝐴) ≤ ((𝑁‘(𝐴𝐺(-1𝑆𝐵))) + (𝑁𝐵))))
7167, 70mpbird 247 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
7210, 8resubcld 10458 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐴) − (𝑁𝐵)) ∈ ℝ)
7372, 69absled 14169 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))) ↔ (-(𝑁‘(𝐴𝐺(-1𝑆𝐵))) ≤ ((𝑁𝐴) − (𝑁𝐵)) ∧ ((𝑁𝐴) − (𝑁𝐵)) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))))
7448, 71, 73mpbir2and 957 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (abs‘((𝑁𝐴) − (𝑁𝐵))) ≤ (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939  cle 10075  cmin 10266  -cneg 10267  abscabs 13974  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  0veccn0v 27443  normCVcnmcv 27445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455
This theorem is referenced by:  nmcvcn  27550
  Copyright terms: Public domain W3C validator