![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oa00 | Structured version Visualization version GIF version |
Description: An ordinal sum is zero iff both of its arguments are zero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
oa00 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on0eln0 5780 | . . . . . . 7 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
2 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
3 | oaword1 7632 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +𝑜 𝐵)) | |
4 | 3 | sseld 3602 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 +𝑜 𝐵))) |
5 | 2, 4 | sylbird 250 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → ∅ ∈ (𝐴 +𝑜 𝐵))) |
6 | ne0i 3921 | . . . . 5 ⊢ (∅ ∈ (𝐴 +𝑜 𝐵) → (𝐴 +𝑜 𝐵) ≠ ∅) | |
7 | 5, 6 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≠ ∅ → (𝐴 +𝑜 𝐵) ≠ ∅)) |
8 | 7 | necon4d 2818 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) = ∅ → 𝐴 = ∅)) |
9 | on0eln0 5780 | . . . . . . 7 ⊢ (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) | |
10 | 9 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
11 | 0elon 5778 | . . . . . . . 8 ⊢ ∅ ∈ On | |
12 | oaord 7627 | . . . . . . . 8 ⊢ ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵))) | |
13 | 11, 12 | mp3an1 1411 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵))) |
14 | 13 | ancoms 469 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵))) |
15 | 10, 14 | bitr3d 270 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵))) |
16 | ne0i 3921 | . . . . 5 ⊢ ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → (𝐴 +𝑜 𝐵) ≠ ∅) | |
17 | 15, 16 | syl6bi 243 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ≠ ∅ → (𝐴 +𝑜 𝐵) ≠ ∅)) |
18 | 17 | necon4d 2818 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) = ∅ → 𝐵 = ∅)) |
19 | 8, 18 | jcad 555 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))) |
20 | oveq12 6659 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +𝑜 𝐵) = (∅ +𝑜 ∅)) | |
21 | oa0 7596 | . . . 4 ⊢ (∅ ∈ On → (∅ +𝑜 ∅) = ∅) | |
22 | 11, 21 | ax-mp 5 | . . 3 ⊢ (∅ +𝑜 ∅) = ∅ |
23 | 20, 22 | syl6eq 2672 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 +𝑜 𝐵) = ∅) |
24 | 19, 23 | impbid1 215 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 Oncon0 5723 (class class class)co 6650 +𝑜 coa 7557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 |
This theorem is referenced by: oalimcl 7640 oeoa 7677 |
Copyright terms: Public domain | W3C validator |