MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmres Structured version   Visualization version   GIF version

Theorem ofmres 7164
Description: Equivalent expressions for a restriction of the function operation map. Unlike 𝑓 𝑅 which is a proper class, ( ∘𝑓 𝑅 ∣ ‘(𝐴 × 𝐵)) can be a set by ofmresex 7165, allowing it to be used as a function or structure argument. By ofmresval 6910, the restricted operation map values are the same as the original values, allowing theorems for 𝑓 𝑅 to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Distinct variable groups:   𝑓,𝑔,𝐴   𝐵,𝑓,𝑔   𝑅,𝑓,𝑔

Proof of Theorem ofmres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssv 3625 . . 3 𝐴 ⊆ V
2 ssv 3625 . . 3 𝐵 ⊆ V
3 resmpt2 6758 . . 3 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
41, 2, 3mp2an 708 . 2 ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
5 df-of 6897 . . 3 𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
65reseq1i 5392 . 2 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = ((𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) ↾ (𝐴 × 𝐵))
7 eqid 2622 . . 3 𝐴 = 𝐴
8 eqid 2622 . . 3 𝐵 = 𝐵
9 vex 3203 . . . 4 𝑓 ∈ V
10 vex 3203 . . . 4 𝑔 ∈ V
119dmex 7099 . . . . . 6 dom 𝑓 ∈ V
1211inex1 4799 . . . . 5 (dom 𝑓 ∩ dom 𝑔) ∈ V
1312mptex 6486 . . . 4 (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V
145ovmpt4g 6783 . . . 4 ((𝑓 ∈ V ∧ 𝑔 ∈ V ∧ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) ∈ V) → (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
159, 10, 13, 14mp3an 1424 . . 3 (𝑓𝑓 𝑅𝑔) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))
167, 8, 15mpt2eq123i 6718 . 2 (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
174, 6, 163eqtr4i 2654 1 ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) = (𝑓𝐴, 𝑔𝐵 ↦ (𝑓𝑓 𝑅𝑔))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  cmpt 4729   × cxp 5112  dom cdm 5114  cres 5116  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897
This theorem is referenced by:  mplsubrglem  19439  psrplusgpropd  19606
  Copyright terms: Public domain W3C validator