| Step | Hyp | Ref
| Expression |
| 1 | | mplsubg.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2622 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | eqid 2622 |
. . 3
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 4 | | mpllss.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | | mplsubg.p |
. . . . 5
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 6 | | mplsubg.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
| 7 | 5, 1, 6, 2 | mplbasss 19432 |
. . . 4
⊢ 𝑈 ⊆ (Base‘𝑆) |
| 8 | | mplsubrglem.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 9 | 7, 8 | sseldi 3601 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑆)) |
| 10 | | mplsubrglem.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 11 | 7, 10 | sseldi 3601 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑆)) |
| 12 | 1, 2, 3, 4, 9, 11 | psrmulcl 19388 |
. 2
⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌) ∈ (Base‘𝑆)) |
| 13 | | ovexd 6680 |
. . 3
⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌) ∈ V) |
| 14 | 1, 2 | psrelbasfun 19380 |
. . . 4
⊢ ((𝑋(.r‘𝑆)𝑌) ∈ (Base‘𝑆) → Fun (𝑋(.r‘𝑆)𝑌)) |
| 15 | 12, 14 | syl 17 |
. . 3
⊢ (𝜑 → Fun (𝑋(.r‘𝑆)𝑌)) |
| 16 | | mplsubrglem.z |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
| 17 | | fvex 6201 |
. . . . 5
⊢
(0g‘𝑅) ∈ V |
| 18 | 16, 17 | eqeltri 2697 |
. . . 4
⊢ 0 ∈
V |
| 19 | 18 | a1i 11 |
. . 3
⊢ (𝜑 → 0 ∈ V) |
| 20 | | mplsubrglem.p |
. . . . 5
⊢ 𝐴 = ( ∘𝑓
+ “ ((𝑋 supp 0 ) ×
(𝑌 supp 0 ))) |
| 21 | | df-ima 5127 |
. . . . 5
⊢ (
∘𝑓 + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = ran (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) |
| 22 | 20, 21 | eqtri 2644 |
. . . 4
⊢ 𝐴 = ran (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) |
| 23 | 5, 1, 2, 16, 6 | mplelbas 19430 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 finSupp 0 )) |
| 24 | 23 | simprbi 480 |
. . . . . . 7
⊢ (𝑋 ∈ 𝑈 → 𝑋 finSupp 0 ) |
| 25 | 8, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 finSupp 0 ) |
| 26 | 5, 1, 2, 16, 6 | mplelbas 19430 |
. . . . . . . 8
⊢ (𝑌 ∈ 𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ 𝑌 finSupp 0 )) |
| 27 | 26 | simprbi 480 |
. . . . . . 7
⊢ (𝑌 ∈ 𝑈 → 𝑌 finSupp 0 ) |
| 28 | 10, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑌 finSupp 0 ) |
| 29 | | fsuppxpfi 8292 |
. . . . . 6
⊢ ((𝑋 finSupp 0 ∧ 𝑌 finSupp 0 ) → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈
Fin) |
| 30 | 25, 28, 29 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈
Fin) |
| 31 | | ofmres 7164 |
. . . . . . 7
⊢ (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = (𝑓 ∈ (𝑋 supp 0 ), 𝑔 ∈ (𝑌 supp 0 ) ↦ (𝑓 ∘𝑓 +
𝑔)) |
| 32 | | ovex 6678 |
. . . . . . 7
⊢ (𝑓 ∘𝑓 +
𝑔) ∈
V |
| 33 | 31, 32 | fnmpt2i 7239 |
. . . . . 6
⊢ (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) |
| 34 | | dffn4 6121 |
. . . . . 6
⊢ ((
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ↔ (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘𝑓 + ↾
((𝑋 supp 0 ) × (𝑌 supp 0 )))) |
| 35 | 33, 34 | mpbi 220 |
. . . . 5
⊢ (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘𝑓 + ↾
((𝑋 supp 0 ) × (𝑌 supp 0 ))) |
| 36 | | fofi 8252 |
. . . . 5
⊢ ((((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin ∧ (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘𝑓 + ↾
((𝑋 supp 0 ) × (𝑌 supp 0 )))) → ran (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈
Fin) |
| 37 | 30, 35, 36 | sylancl 694 |
. . . 4
⊢ (𝜑 → ran (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈
Fin) |
| 38 | 22, 37 | syl5eqel 2705 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 39 | | eqid 2622 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 40 | | mplsubrglem.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 41 | 1, 39, 40, 2, 12 | psrelbas 19379 |
. . . 4
⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌):𝐷⟶(Base‘𝑅)) |
| 42 | | mplsubrglem.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 43 | 9 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → 𝑋 ∈ (Base‘𝑆)) |
| 44 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → 𝑌 ∈ (Base‘𝑆)) |
| 45 | | eldifi 3732 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐷 ∖ 𝐴) → 𝑘 ∈ 𝐷) |
| 46 | 45 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → 𝑘 ∈ 𝐷) |
| 47 | 1, 2, 42, 3, 40, 43, 44, 46 | psrmulval 19386 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → ((𝑋(.r‘𝑆)𝑌)‘𝑘) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥)))))) |
| 48 | 4 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 49 | 5, 39, 6, 40, 10 | mplelf 19433 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| 50 | 49 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
| 51 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ⊆ 𝐷 |
| 52 | | mplsubg.i |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 53 | 52 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝐼 ∈ 𝑊) |
| 54 | 46 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 55 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 56 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} |
| 57 | 40, 56 | psrbagconcl 19373 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 58 | 53, 54, 55, 57 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 59 | 51, 58 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) ∈ 𝐷) |
| 60 | 50, 59 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑌‘(𝑘 ∘𝑓 − 𝑥)) ∈ (Base‘𝑅)) |
| 61 | 39, 42, 16 | ringlz 18587 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘(𝑘 ∘𝑓 − 𝑥)) ∈ (Base‘𝑅)) → ( 0 · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 ) |
| 62 | 48, 60, 61 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ( 0 · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 ) |
| 63 | | oveq1 6657 |
. . . . . . . . . 10
⊢ ((𝑋‘𝑥) = 0 → ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = ( 0 · (𝑌‘(𝑘 ∘𝑓 − 𝑥)))) |
| 64 | 63 | eqeq1d 2624 |
. . . . . . . . 9
⊢ ((𝑋‘𝑥) = 0 → (((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 ↔ ( 0 · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 )) |
| 65 | 62, 64 | syl5ibrcom 237 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑥) = 0 → ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 )) |
| 66 | 5, 39, 6, 40, 8 | mplelf 19433 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 67 | 66 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 68 | 51, 55 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
| 69 | 67, 68 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 70 | 39, 42, 16 | ringrz 18588 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑋‘𝑥) · 0 ) = 0 ) |
| 71 | 48, 69, 70 | syl2anc 693 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑥) · 0 ) = 0 ) |
| 72 | | oveq2 6658 |
. . . . . . . . . 10
⊢ ((𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 → ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = ((𝑋‘𝑥) · 0 )) |
| 73 | 72 | eqeq1d 2624 |
. . . . . . . . 9
⊢ ((𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 → (((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 ↔ ((𝑋‘𝑥) · 0 ) = 0 )) |
| 74 | 71, 73 | syl5ibrcom 237 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 → ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 )) |
| 75 | 40 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
| 76 | 53, 68, 75 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑥:𝐼⟶ℕ0) |
| 77 | 76 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑛 ∈ 𝐼) → (𝑥‘𝑛) ∈
ℕ0) |
| 78 | 40 | psrbagf 19365 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷) → 𝑘:𝐼⟶ℕ0) |
| 79 | 53, 54, 78 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑘:𝐼⟶ℕ0) |
| 80 | 79 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑛 ∈ 𝐼) → (𝑘‘𝑛) ∈
ℕ0) |
| 81 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥‘𝑛) ∈ ℕ0 → (𝑥‘𝑛) ∈ ℂ) |
| 82 | | nn0cn 11302 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘‘𝑛) ∈ ℕ0 → (𝑘‘𝑛) ∈ ℂ) |
| 83 | | pncan3 10289 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥‘𝑛) ∈ ℂ ∧ (𝑘‘𝑛) ∈ ℂ) → ((𝑥‘𝑛) + ((𝑘‘𝑛) − (𝑥‘𝑛))) = (𝑘‘𝑛)) |
| 84 | 81, 82, 83 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥‘𝑛) ∈ ℕ0 ∧ (𝑘‘𝑛) ∈ ℕ0) → ((𝑥‘𝑛) + ((𝑘‘𝑛) − (𝑥‘𝑛))) = (𝑘‘𝑛)) |
| 85 | 77, 80, 84 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) + ((𝑘‘𝑛) − (𝑥‘𝑛))) = (𝑘‘𝑛)) |
| 86 | 85 | mpteq2dva 4744 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑛 ∈ 𝐼 ↦ ((𝑥‘𝑛) + ((𝑘‘𝑛) − (𝑥‘𝑛)))) = (𝑛 ∈ 𝐼 ↦ (𝑘‘𝑛))) |
| 87 | | ovexd 6680 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑛 ∈ 𝐼) → ((𝑘‘𝑛) − (𝑥‘𝑛)) ∈ V) |
| 88 | 76 | feqmptd 6249 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑥 = (𝑛 ∈ 𝐼 ↦ (𝑥‘𝑛))) |
| 89 | 79 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑘 = (𝑛 ∈ 𝐼 ↦ (𝑘‘𝑛))) |
| 90 | 53, 80, 77, 89, 88 | offval2 6914 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) = (𝑛 ∈ 𝐼 ↦ ((𝑘‘𝑛) − (𝑥‘𝑛)))) |
| 91 | 53, 77, 87, 88, 90 | offval2 6914 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑥 ∘𝑓 + (𝑘 ∘𝑓
− 𝑥)) = (𝑛 ∈ 𝐼 ↦ ((𝑥‘𝑛) + ((𝑘‘𝑛) − (𝑥‘𝑛))))) |
| 92 | 86, 91, 89 | 3eqtr4d 2666 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑥 ∘𝑓 + (𝑘 ∘𝑓
− 𝑥)) = 𝑘) |
| 93 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑘 ∈ (𝐷 ∖ 𝐴)) |
| 94 | 92, 93 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑥 ∘𝑓 + (𝑘 ∘𝑓
− 𝑥)) ∈ (𝐷 ∖ 𝐴)) |
| 95 | 94 | eldifbd 3587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ¬ (𝑥 ∘𝑓 +
(𝑘
∘𝑓 − 𝑥)) ∈ 𝐴) |
| 96 | | ovres 6800 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘𝑓 +
↾ ((𝑋 supp 0 ) ×
(𝑌 supp 0 )))(𝑘 ∘𝑓 − 𝑥)) = (𝑥 ∘𝑓 + (𝑘 ∘𝑓
− 𝑥))) |
| 97 | | fnovrn 6809 |
. . . . . . . . . . . . . 14
⊢ (((
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘𝑓 +
↾ ((𝑋 supp 0 ) ×
(𝑌 supp 0 )))(𝑘 ∘𝑓 − 𝑥)) ∈ ran (
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))) |
| 98 | 97, 22 | syl6eleqr 2712 |
. . . . . . . . . . . . 13
⊢ (((
∘𝑓 + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘𝑓 +
↾ ((𝑋 supp 0 ) ×
(𝑌 supp 0 )))(𝑘 ∘𝑓 − 𝑥)) ∈ 𝐴) |
| 99 | 33, 98 | mp3an1 1411 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘𝑓 +
↾ ((𝑋 supp 0 ) ×
(𝑌 supp 0 )))(𝑘 ∘𝑓 − 𝑥)) ∈ 𝐴) |
| 100 | 96, 99 | eqeltrrd 2702 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) → (𝑥 ∘𝑓 +
(𝑘
∘𝑓 − 𝑥)) ∈ 𝐴) |
| 101 | 95, 100 | nsyl 135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 ))) |
| 102 | | ianor 509 |
. . . . . . . . . 10
⊢ (¬
(𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) ↔ (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 ))) |
| 103 | 101, 102 | sylib 208 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 ))) |
| 104 | | eldif 3584 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ (𝑋 supp 0 ))) |
| 105 | 104 | baib 944 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 ))) |
| 106 | 68, 105 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 ))) |
| 107 | | ssid 3624 |
. . . . . . . . . . . . . 14
⊢ (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ) |
| 108 | 107 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 )) |
| 109 | | ovex 6678 |
. . . . . . . . . . . . . . 15
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 110 | 40, 109 | rabex2 4815 |
. . . . . . . . . . . . . 14
⊢ 𝐷 ∈ V |
| 111 | 110 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝐷 ∈ V) |
| 112 | 18 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 0 ∈ V) |
| 113 | 67, 108, 111, 112 | suppssr 7326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋‘𝑥) = 0 ) |
| 114 | 113 | ex 450 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) → (𝑋‘𝑥) = 0 )) |
| 115 | 106, 114 | sylbird 250 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) → (𝑋‘𝑥) = 0 )) |
| 116 | | eldif 3584 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∘𝑓
− 𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ((𝑘 ∘𝑓
− 𝑥) ∈ 𝐷 ∧ ¬ (𝑘 ∘𝑓 − 𝑥) ∈ (𝑌 supp 0 ))) |
| 117 | 116 | baib 944 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∘𝑓
− 𝑥) ∈ 𝐷 → ((𝑘 ∘𝑓 − 𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 ))) |
| 118 | 59, 117 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑘 ∘𝑓 − 𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 ))) |
| 119 | | ssid 3624 |
. . . . . . . . . . . . . 14
⊢ (𝑌 supp 0 ) ⊆ (𝑌 supp 0 ) |
| 120 | 119 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑌 supp 0 ) ⊆ (𝑌 supp 0 )) |
| 121 | 50, 120, 111, 112 | suppssr 7326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ (𝑘 ∘𝑓 − 𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 ))) → (𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 ) |
| 122 | 121 | ex 450 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑘 ∘𝑓 − 𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) → (𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 )) |
| 123 | 118, 122 | sylbird 250 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (¬ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 ) → (𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 )) |
| 124 | 115, 123 | orim12d 883 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘 ∘𝑓
− 𝑥) ∈ (𝑌 supp 0 )) → ((𝑋‘𝑥) = 0 ∨ (𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 ))) |
| 125 | 103, 124 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑥) = 0 ∨ (𝑌‘(𝑘 ∘𝑓 − 𝑥)) = 0 )) |
| 126 | 65, 74, 125 | mpjaod 396 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))) = 0 ) |
| 127 | 126 | mpteq2dva 4744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ 0 )) |
| 128 | 127 | oveq2d 6666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥) · (𝑌‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ 0 ))) |
| 129 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → 𝑅 ∈ Ring) |
| 130 | | ringmnd 18556 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 131 | 129, 130 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → 𝑅 ∈ Mnd) |
| 132 | 40 | psrbaglefi 19372 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 133 | 52, 45, 132 | syl2an 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 134 | 16 | gsumz 17374 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ∈ Fin) → (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ 0 )) = 0 ) |
| 135 | 131, 133,
134 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ 0 )) = 0 ) |
| 136 | 47, 128, 135 | 3eqtrd 2660 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐷 ∖ 𝐴)) → ((𝑋(.r‘𝑆)𝑌)‘𝑘) = 0 ) |
| 137 | 41, 136 | suppss 7325 |
. . 3
⊢ (𝜑 → ((𝑋(.r‘𝑆)𝑌) supp 0 ) ⊆ 𝐴) |
| 138 | | suppssfifsupp 8290 |
. . 3
⊢ ((((𝑋(.r‘𝑆)𝑌) ∈ V ∧ Fun (𝑋(.r‘𝑆)𝑌) ∧ 0 ∈ V) ∧ (𝐴 ∈ Fin ∧ ((𝑋(.r‘𝑆)𝑌) supp 0 ) ⊆ 𝐴)) → (𝑋(.r‘𝑆)𝑌) finSupp 0 ) |
| 139 | 13, 15, 19, 38, 137, 138 | syl32anc 1334 |
. 2
⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌) finSupp 0 ) |
| 140 | 5, 1, 2, 16, 6 | mplelbas 19430 |
. 2
⊢ ((𝑋(.r‘𝑆)𝑌) ∈ 𝑈 ↔ ((𝑋(.r‘𝑆)𝑌) ∈ (Base‘𝑆) ∧ (𝑋(.r‘𝑆)𝑌) finSupp 0 )) |
| 141 | 12, 139, 140 | sylanbrc 698 |
1
⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌) ∈ 𝑈) |