![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabn0 | Structured version Visualization version GIF version |
Description: Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.) |
Ref | Expression |
---|---|
rabn0 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq0 3957 | . . 3 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
2 | 1 | necon3abii 2840 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
3 | dfrex2 2996 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 {crab 2916 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: class2set 4832 reusv2 4874 exss 4931 frminex 5094 weniso 6604 onminesb 6998 onminsb 6999 onminex 7007 oeeulem 7681 supval2 8361 ordtypelem3 8425 card2on 8459 tz9.12lem3 8652 rankf 8657 scott0 8749 karden 8758 cardf2 8769 cardval3 8778 cardmin2 8824 acni3 8870 kmlem3 8974 cofsmo 9091 coftr 9095 fin23lem7 9138 enfin2i 9143 axcc4 9261 axdc3lem4 9275 ac6num 9301 pwfseqlem3 9482 wuncval 9564 wunccl 9566 tskmcl 9663 infm3 10982 nnwos 11755 zsupss 11777 zmin 11784 rpnnen1lem2 11814 rpnnen1lem1 11815 rpnnen1lem3 11816 rpnnen1lem5 11818 rpnnen1lem1OLD 11821 rpnnen1lem3OLD 11822 rpnnen1lem5OLD 11824 ioo0 12200 ico0 12221 ioc0 12222 icc0 12223 bitsfzolem 15156 lcmcllem 15309 fissn0dvdsn0 15333 odzcllem 15497 vdwnn 15702 ram0 15726 ramsey 15734 sylow2blem3 18037 iscyg2 18284 pgpfac1lem5 18478 ablfaclem2 18485 ablfaclem3 18486 ablfac 18487 lspf 18974 ordtrest2lem 21007 ordthauslem 21187 1stcfb 21248 2ndcdisj 21259 ptclsg 21418 txconn 21492 txflf 21810 tsmsfbas 21931 iscmet3 23091 minveclem3b 23199 iundisj 23316 dyadmax 23366 dyadmbllem 23367 elqaalem1 24074 elqaalem3 24076 sgmnncl 24873 musum 24917 incistruhgr 25974 uvtxa01vtx0 26297 spancl 28195 shsval2i 28246 ococin 28267 iundisjf 29402 iundisjfi 29555 ordtrest2NEWlem 29968 esumrnmpt2 30130 esumpinfval 30135 dmsigagen 30207 ballotlemfc0 30554 ballotlemfcc 30555 ballotlemiex 30563 ballotlemsup 30566 bnj110 30928 bnj1204 31080 bnj1253 31085 connpconn 31217 iscvm 31241 wsuclem 31773 wsuclemOLD 31774 conway 31910 poimirlem28 33437 sstotbnd2 33573 igenval 33860 igenidl 33862 pmap0 35051 pellfundre 37445 pellfundge 37446 pellfundglb 37449 dgraalem 37715 rgspncl 37739 uzwo4 39221 ioodvbdlimc1lem1 40146 fourierdlem31 40355 fourierdlem64 40387 etransclem48 40499 subsaliuncl 40576 smflimlem6 40984 smfpimcc 41014 prmdvdsfmtnof1lem1 41496 prmdvdsfmtnof 41498 |
Copyright terms: Public domain | W3C validator |