Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvcval Structured version   Visualization version   Unicode version

Theorem orvcval 30519
Description: Value of the preimage mapping operator applied on a given random variable and constant. (Contributed by Thierry Arnoux, 19-Jan-2017.)
Hypotheses
Ref Expression
orvcval.1  |-  ( ph  ->  Fun  X )
orvcval.2  |-  ( ph  ->  X  e.  V )
orvcval.3  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
orvcval  |-  ( ph  ->  ( XRV/𝑐 R A )  =  ( `' X " { y  |  y R A } ) )
Distinct variable groups:    y, A    y, R    y, X
Allowed substitution hints:    ph( y)    V( y)    W( y)

Proof of Theorem orvcval
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-orvc 30518 . . 3  |-RV/𝑐 R  =  ( x  e.  { x  |  Fun  x } , 
a  e.  _V  |->  ( `' x " { y  |  y R a } ) )
21a1i 11 . 2  |-  ( ph  ->RV/𝑐 R  =  ( x  e. 
{ x  |  Fun  x } ,  a  e. 
_V  |->  ( `' x " { y  |  y R a } ) ) )
3 simpl 473 . . . . 5  |-  ( ( x  =  X  /\  a  =  A )  ->  x  =  X )
43cnveqd 5298 . . . 4  |-  ( ( x  =  X  /\  a  =  A )  ->  `' x  =  `' X )
5 simpr 477 . . . . . 6  |-  ( ( x  =  X  /\  a  =  A )  ->  a  =  A )
65breq2d 4665 . . . . 5  |-  ( ( x  =  X  /\  a  =  A )  ->  ( y R a  <-> 
y R A ) )
76abbidv 2741 . . . 4  |-  ( ( x  =  X  /\  a  =  A )  ->  { y  |  y R a }  =  { y  |  y R A } )
84, 7imaeq12d 5467 . . 3  |-  ( ( x  =  X  /\  a  =  A )  ->  ( `' x " { y  |  y R a } )  =  ( `' X " { y  |  y R A } ) )
98adantl 482 . 2  |-  ( (
ph  /\  ( x  =  X  /\  a  =  A ) )  -> 
( `' x " { y  |  y R a } )  =  ( `' X " { y  |  y R A } ) )
10 orvcval.1 . . 3  |-  ( ph  ->  Fun  X )
11 orvcval.2 . . . 4  |-  ( ph  ->  X  e.  V )
12 funeq 5908 . . . . 5  |-  ( x  =  X  ->  ( Fun  x  <->  Fun  X ) )
1312elabg 3351 . . . 4  |-  ( X  e.  V  ->  ( X  e.  { x  |  Fun  x }  <->  Fun  X ) )
1411, 13syl 17 . . 3  |-  ( ph  ->  ( X  e.  {
x  |  Fun  x } 
<->  Fun  X ) )
1510, 14mpbird 247 . 2  |-  ( ph  ->  X  e.  { x  |  Fun  x } )
16 orvcval.3 . . 3  |-  ( ph  ->  A  e.  W )
17 elex 3212 . . 3  |-  ( A  e.  W  ->  A  e.  _V )
1816, 17syl 17 . 2  |-  ( ph  ->  A  e.  _V )
19 cnvexg 7112 . . 3  |-  ( X  e.  V  ->  `' X  e.  _V )
20 imaexg 7103 . . 3  |-  ( `' X  e.  _V  ->  ( `' X " { y  |  y R A } )  e.  _V )
2111, 19, 203syl 18 . 2  |-  ( ph  ->  ( `' X " { y  |  y R A } )  e.  _V )
222, 9, 15, 18, 21ovmpt2d 6788 1  |-  ( ph  ->  ( XRV/𝑐 R A )  =  ( `' X " { y  |  y R A } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   class class class wbr 4653   `'ccnv 5113   "cima 5117   Fun wfun 5882  (class class class)co 6650    |-> cmpt2 6652  ∘RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-orvc 30518
This theorem is referenced by:  orvcval2  30520  orvcval4  30522
  Copyright terms: Public domain W3C validator