MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanali Structured version   Visualization version   GIF version

Theorem rexanali 2998
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.)
Assertion
Ref Expression
rexanali (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem rexanali
StepHypRef Expression
1 dfrex2 2996 . 2 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
2 iman 440 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓))
32ralbii 2980 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ¬ (𝜑 ∧ ¬ 𝜓))
41, 3xchbinxr 325 1 (∃𝑥𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wral 2912  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917  df-rex 2918
This theorem is referenced by:  nrexralim  2999  wfi  5713  qsqueeze  12032  ncoprmgcdne1b  15363  elcls  20877  ist1-2  21151  haust1  21156  t1sep  21174  bwth  21213  1stccnp  21265  filufint  21724  fclscf  21829  pmltpc  23219  ovolgelb  23248  itg2seq  23509  radcnvlt1  24172  pntlem3  25298  umgr2edg1  26103  umgr2edgneu  26106  archiabl  29752  ordtconnlem1  29970  ceqsralv2  31607  frind  31740  nosupbnd1lem5  31858  limsucncmpi  32444  matunitlindflem1  33405  ftc1anclem5  33489  clsk3nimkb  38338
  Copyright terms: Public domain W3C validator