Proof of Theorem pmodl42N
| Step | Hyp | Ref
| Expression |
| 1 | | incom 3805 |
. . . 4
⊢ ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))) |
| 2 | | simpl1 1064 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝐾 ∈ HL) |
| 3 | | simpl3 1066 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ∈ 𝑆) |
| 4 | | eqid 2622 |
. . . . . . 7
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 5 | | pmodl42.s |
. . . . . . 7
⊢ 𝑆 = (PSubSp‘𝐾) |
| 6 | 4, 5 | psubssat 35040 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 7 | 2, 3, 6 | syl2anc 693 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 8 | | simpl2 1065 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ∈ 𝑆) |
| 9 | 4, 5 | psubssat 35040 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 10 | 2, 8, 9 | syl2anc 693 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 11 | | simprl 794 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑍 ∈ 𝑆) |
| 12 | 4, 5 | psubssat 35040 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑍 ∈ 𝑆) → 𝑍 ⊆ (Atoms‘𝐾)) |
| 13 | 2, 11, 12 | syl2anc 693 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑍 ⊆ (Atoms‘𝐾)) |
| 14 | | pmodl42.p |
. . . . . . 7
⊢ + =
(+𝑃‘𝐾) |
| 15 | 4, 14 | paddssat 35100 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾)) |
| 16 | 2, 10, 13, 15 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ⊆ (Atoms‘𝐾)) |
| 17 | | simprr 796 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑊 ∈ 𝑆) |
| 18 | 5, 14 | paddclN 35128 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆) → (𝑌 + 𝑊) ∈ 𝑆) |
| 19 | 2, 3, 17, 18 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + 𝑊) ∈ 𝑆) |
| 20 | 4, 5 | psubssat 35040 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝑆) → 𝑊 ⊆ (Atoms‘𝐾)) |
| 21 | 2, 17, 20 | syl2anc 693 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑊 ⊆ (Atoms‘𝐾)) |
| 22 | 4, 14 | sspadd1 35101 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾)) → 𝑌 ⊆ (𝑌 + 𝑊)) |
| 23 | 2, 7, 21, 22 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑌 ⊆ (𝑌 + 𝑊)) |
| 24 | 4, 5, 14 | pmod1i 35134 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆)) → (𝑌 ⊆ (𝑌 + 𝑊) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
| 25 | 24 | 3impia 1261 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 ⊆ (Atoms‘𝐾) ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ∈ 𝑆) ∧ 𝑌 ⊆ (𝑌 + 𝑊)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |
| 26 | 2, 7, 16, 19, 23, 25 | syl131anc 1339 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑌 + 𝑊)) = (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |
| 27 | 1, 26 | syl5reqr 2671 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))) |
| 28 | 27 | oveq2d 6666 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
| 29 | | ssinss1 3841 |
. . . 4
⊢ ((𝑋 + 𝑍) ⊆ (Atoms‘𝐾) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾)) |
| 30 | 16, 29 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾)) |
| 31 | 4, 14 | paddass 35124 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)) ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
| 32 | 2, 10, 7, 30, 31 | syl13anc 1328 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))) = (𝑋 + (𝑌 + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊))))) |
| 33 | 4, 14 | paddass 35124 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 34 | 2, 10, 7, 13, 33 | syl13anc 1328 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 35 | 4, 14 | padd12N 35125 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾))) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| 36 | 2, 10, 7, 13, 35 | syl13anc 1328 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
| 37 | 34, 36 | eqtrd 2656 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑍) = (𝑌 + (𝑋 + 𝑍))) |
| 38 | 4, 14 | paddass 35124 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾) ∧ 𝑊 ⊆ (Atoms‘𝐾))) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊))) |
| 39 | 2, 10, 7, 21, 38 | syl13anc 1328 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + 𝑌) + 𝑊) = (𝑋 + (𝑌 + 𝑊))) |
| 40 | 37, 39 | ineq12d 3815 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊)))) |
| 41 | | incom 3805 |
. . . 4
⊢ ((𝑌 + (𝑋 + 𝑍)) ∩ (𝑋 + (𝑌 + 𝑊))) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) |
| 42 | 40, 41 | syl6eq 2672 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍)))) |
| 43 | 4, 5 | psubssat 35040 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑌 + 𝑊) ∈ 𝑆) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾)) |
| 44 | 2, 19, 43 | syl2anc 693 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + 𝑊) ⊆ (Atoms‘𝐾)) |
| 45 | 5, 14 | paddclN 35128 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑍 ∈ 𝑆) → (𝑋 + 𝑍) ∈ 𝑆) |
| 46 | 2, 8, 11, 45 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ∈ 𝑆) |
| 47 | 5, 14 | paddclN 35128 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑆 ∧ (𝑋 + 𝑍) ∈ 𝑆) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) |
| 48 | 2, 3, 46, 47 | syl3anc 1326 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) |
| 49 | 4, 14 | sspadd1 35101 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ (Atoms‘𝐾) ∧ 𝑍 ⊆ (Atoms‘𝐾)) → 𝑋 ⊆ (𝑋 + 𝑍)) |
| 50 | 2, 10, 13, 49 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (𝑋 + 𝑍)) |
| 51 | 4, 14 | sspadd2 35102 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 + 𝑍) ⊆ (Atoms‘𝐾) ∧ 𝑌 ⊆ (Atoms‘𝐾)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍))) |
| 52 | 2, 16, 7, 51 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (𝑋 + 𝑍) ⊆ (𝑌 + (𝑋 + 𝑍))) |
| 53 | 50, 52 | sstrd 3613 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) |
| 54 | 4, 5, 14 | pmod1i 35134 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆)) → (𝑋 ⊆ (𝑌 + (𝑋 + 𝑍)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍)))))) |
| 55 | 54 | 3impia 1261 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ (Atoms‘𝐾) ∧ (𝑌 + 𝑊) ⊆ (Atoms‘𝐾) ∧ (𝑌 + (𝑋 + 𝑍)) ∈ 𝑆) ∧ 𝑋 ⊆ (𝑌 + (𝑋 + 𝑍))) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
| 56 | 2, 10, 44, 48, 53, 55 | syl131anc 1339 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → ((𝑋 + (𝑌 + 𝑊)) ∩ (𝑌 + (𝑋 + 𝑍))) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
| 57 | 42, 56 | eqtrd 2656 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = (𝑋 + ((𝑌 + 𝑊) ∩ (𝑌 + (𝑋 + 𝑍))))) |
| 58 | 28, 32, 57 | 3eqtr4rd 2667 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) |