MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrrn Structured version   Visualization version   GIF version

Theorem pmtrrn 17877
Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrrn ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) ∈ 𝑅)

Proof of Theorem pmtrrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptexg 6484 . . . . . . 7 (𝐷𝑉 → (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
21ralrimivw 2967 . . . . . 6 (𝐷𝑉 → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
323ad2ant1 1082 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → ∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V)
4 eqid 2622 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)))
54fnmpt 6020 . . . . 5 (∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦)) ∈ V → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
63, 5syl 17 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
7 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
87pmtrfval 17870 . . . . . 6 (𝐷𝑉𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
983ad2ant1 1082 . . . . 5 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑇 = (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))))
109fneq1d 5981 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↔ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑦𝐷 ↦ if(𝑦𝑧, (𝑧 ∖ {𝑦}), 𝑦))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜}))
116, 10mpbird 247 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
12 elpw2g 4827 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
1312biimpar 502 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
14133adant3 1081 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃 ∈ 𝒫 𝐷)
15 simp3 1063 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃 ≈ 2𝑜)
16 breq1 4656 . . . . 5 (𝑥 = 𝑃 → (𝑥 ≈ 2𝑜𝑃 ≈ 2𝑜))
1716elrab 3363 . . . 4 (𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↔ (𝑃 ∈ 𝒫 𝐷𝑃 ≈ 2𝑜))
1814, 15, 17sylanbrc 698 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
19 fnfvelrn 6356 . . 3 ((𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ∧ 𝑃 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜}) → (𝑇𝑃) ∈ ran 𝑇)
2011, 18, 19syl2anc 693 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) ∈ ran 𝑇)
21 pmtrrn.r . 2 𝑅 = ran 𝑇
2220, 21syl6eleqr 2712 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729  ran crn 5115   Fn wfn 5883  cfv 5888  2𝑜c2o 7554  cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-pmtr 17862
This theorem is referenced by:  pmtrfb  17885  symggen  17890  pmtr3ncom  17895  pmtrdifellem1  17896  mdetralt  20414  pmtrto1cl  29849  pmtridf1o  29856
  Copyright terms: Public domain W3C validator