MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfrn Structured version   Visualization version   GIF version

Theorem pmtrfrn 17878
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom (𝐹 ∖ I )
Assertion
Ref Expression
pmtrfrn (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))

Proof of Theorem pmtrfrn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3919 . . . 4 ¬ 𝐹 ∈ ∅
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 pmtrrn.t . . . . . . . . 9 𝑇 = (pmTrsp‘𝐷)
4 fvprc 6185 . . . . . . . . 9 𝐷 ∈ V → (pmTrsp‘𝐷) = ∅)
53, 4syl5eq 2668 . . . . . . . 8 𝐷 ∈ V → 𝑇 = ∅)
65rneqd 5353 . . . . . . 7 𝐷 ∈ V → ran 𝑇 = ran ∅)
7 rn0 5377 . . . . . . 7 ran ∅ = ∅
86, 7syl6eq 2672 . . . . . 6 𝐷 ∈ V → ran 𝑇 = ∅)
92, 8syl5eq 2668 . . . . 5 𝐷 ∈ V → 𝑅 = ∅)
109eleq2d 2687 . . . 4 𝐷 ∈ V → (𝐹𝑅𝐹 ∈ ∅))
111, 10mtbiri 317 . . 3 𝐷 ∈ V → ¬ 𝐹𝑅)
1211con4i 113 . 2 (𝐹𝑅𝐷 ∈ V)
13 mptexg 6484 . . . . . . . 8 (𝐷 ∈ V → (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V)
1413ralrimivw 2967 . . . . . . 7 (𝐷 ∈ V → ∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V)
15 eqid 2622 . . . . . . . 8 (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)))
1615fnmpt 6020 . . . . . . 7 (∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
1714, 16syl 17 . . . . . 6 (𝐷 ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
183pmtrfval 17870 . . . . . . 7 (𝐷 ∈ V → 𝑇 = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))))
1918fneq1d 5981 . . . . . 6 (𝐷 ∈ V → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↔ (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜}))
2017, 19mpbird 247 . . . . 5 (𝐷 ∈ V → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜})
21 fvelrnb 6243 . . . . 5 (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹))
2220, 21syl 17 . . . 4 (𝐷 ∈ V → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹))
232eleq2i 2693 . . . 4 (𝐹𝑅𝐹 ∈ ran 𝑇)
24 breq1 4656 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≈ 2𝑜𝑦 ≈ 2𝑜))
2524rexrab 3370 . . . . 5 (∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹))
2625bicomi 214 . . . 4 (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2𝑜} (𝑇𝑦) = 𝐹)
2722, 23, 263bitr4g 303 . . 3 (𝐷 ∈ V → (𝐹𝑅 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹)))
28 elpwi 4168 . . . . 5 (𝑦 ∈ 𝒫 𝐷𝑦𝐷)
29 simp1 1061 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝐷 ∈ V)
303pmtrmvd 17876 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → dom ((𝑇𝑦) ∖ I ) = 𝑦)
31 simp2 1062 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝑦𝐷)
3230, 31eqsstrd 3639 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷)
33 simp3 1063 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝑦 ≈ 2𝑜)
3430, 33eqbrtrd 4675 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜)
3529, 32, 343jca 1242 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → (𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜))
3630eqcomd 2628 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → 𝑦 = dom ((𝑇𝑦) ∖ I ))
3736fveq2d 6195 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I )))
3835, 37jca 554 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))))
39 difeq1 3721 . . . . . . . . . . 11 ((𝑇𝑦) = 𝐹 → ((𝑇𝑦) ∖ I ) = (𝐹 ∖ I ))
4039dmeqd 5326 . . . . . . . . . 10 ((𝑇𝑦) = 𝐹 → dom ((𝑇𝑦) ∖ I ) = dom (𝐹 ∖ I ))
41 pmtrfrn.p . . . . . . . . . 10 𝑃 = dom (𝐹 ∖ I )
4240, 41syl6eqr 2674 . . . . . . . . 9 ((𝑇𝑦) = 𝐹 → dom ((𝑇𝑦) ∖ I ) = 𝑃)
43 sseq1 3626 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷𝑃𝐷))
44 breq1 4656 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜𝑃 ≈ 2𝑜))
4543, 443anbi23d 1402 . . . . . . . . . . 11 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ↔ (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜)))
4645adantl 482 . . . . . . . . . 10 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ↔ (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜)))
47 simpl 473 . . . . . . . . . . 11 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (𝑇𝑦) = 𝐹)
48 fveq2 6191 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (𝑇‘dom ((𝑇𝑦) ∖ I )) = (𝑇𝑃))
4948adantl 482 . . . . . . . . . . 11 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (𝑇‘dom ((𝑇𝑦) ∖ I )) = (𝑇𝑃))
5047, 49eqeq12d 2637 . . . . . . . . . 10 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → ((𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I )) ↔ 𝐹 = (𝑇𝑃)))
5146, 50anbi12d 747 . . . . . . . . 9 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5242, 51mpdan 702 . . . . . . . 8 ((𝑇𝑦) = 𝐹 → (((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2𝑜) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5338, 52syl5ibcom 235 . . . . . . 7 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2𝑜) → ((𝑇𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
54533exp 1264 . . . . . 6 (𝐷 ∈ V → (𝑦𝐷 → (𝑦 ≈ 2𝑜 → ((𝑇𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))))
5554imp4a 614 . . . . 5 (𝐷 ∈ V → (𝑦𝐷 → ((𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))))
5628, 55syl5 34 . . . 4 (𝐷 ∈ V → (𝑦 ∈ 𝒫 𝐷 → ((𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))))
5756rexlimdv 3030 . . 3 (𝐷 ∈ V → (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2𝑜 ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5827, 57sylbid 230 . 2 (𝐷 ∈ V → (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃))))
5912, 58mpcom 38 1 (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2𝑜) ∧ 𝐹 = (𝑇𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177   cuni 4436   class class class wbr 4653  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115   Fn wfn 5883  cfv 5888  2𝑜c2o 7554  cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  pmtrffv  17879  pmtrrn2  17880  pmtrfinv  17881  pmtrfmvdn0  17882  pmtrff1o  17883  pmtrfcnv  17884  pmtrfb  17885
  Copyright terms: Public domain W3C validator