| Step | Hyp | Ref
| Expression |
| 1 | | pmtrfval.t |
. . . 4
⊢ 𝑇 = (pmTrsp‘𝐷) |
| 2 | 1 | pmtrf 17875 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) →
(𝑇‘𝑃):𝐷⟶𝐷) |
| 3 | | ffn 6045 |
. . 3
⊢ ((𝑇‘𝑃):𝐷⟶𝐷 → (𝑇‘𝑃) Fn 𝐷) |
| 4 | | fndifnfp 6442 |
. . 3
⊢ ((𝑇‘𝑃) Fn 𝐷 → dom ((𝑇‘𝑃) ∖ I ) = {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧}) |
| 5 | 2, 3, 4 | 3syl 18 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) → dom
((𝑇‘𝑃) ∖ I ) = {𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧}) |
| 6 | 1 | pmtrfv 17872 |
. . . . . 6
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝐷) → ((𝑇‘𝑃)‘𝑧) = if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧)) |
| 7 | 6 | neeq1d 2853 |
. . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝐷) → (((𝑇‘𝑃)‘𝑧) ≠ 𝑧 ↔ if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)) |
| 8 | | iffalse 4095 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = 𝑧) |
| 9 | 8 | necon1ai 2821 |
. . . . . . 7
⊢ (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 → 𝑧 ∈ 𝑃) |
| 10 | | iftrue 4092 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = ∪ (𝑃 ∖ {𝑧})) |
| 11 | 10 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) = ∪ (𝑃 ∖ {𝑧})) |
| 12 | | 1onn 7719 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ ω |
| 13 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → 1𝑜 ∈
ω) |
| 14 | | simpl3 1066 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈
2𝑜) |
| 15 | | df-2o 7561 |
. . . . . . . . . . . 12
⊢
2𝑜 = suc 1𝑜 |
| 16 | 14, 15 | syl6breq 4694 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → 𝑃 ≈ suc
1𝑜) |
| 17 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → 𝑧 ∈ 𝑃) |
| 18 | | dif1en 8193 |
. . . . . . . . . . 11
⊢
((1𝑜 ∈ ω ∧ 𝑃 ≈ suc 1𝑜 ∧
𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈
1𝑜) |
| 19 | 13, 16, 17, 18 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → (𝑃 ∖ {𝑧}) ≈
1𝑜) |
| 20 | | en1uniel 8028 |
. . . . . . . . . 10
⊢ ((𝑃 ∖ {𝑧}) ≈ 1𝑜 → ∪ (𝑃
∖ {𝑧}) ∈ (𝑃 ∖ {𝑧})) |
| 21 | | eldifsni 4320 |
. . . . . . . . . 10
⊢ (∪ (𝑃
∖ {𝑧}) ∈ (𝑃 ∖ {𝑧}) → ∪ (𝑃 ∖ {𝑧}) ≠ 𝑧) |
| 22 | 19, 20, 21 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → ∪ (𝑃 ∖ {𝑧}) ≠ 𝑧) |
| 23 | 11, 22 | eqnetrd 2861 |
. . . . . . . 8
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝑃) → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧) |
| 24 | 23 | ex 450 |
. . . . . . 7
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) →
(𝑧 ∈ 𝑃 → if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧)) |
| 25 | 9, 24 | impbid2 216 |
. . . . . 6
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) →
(if(𝑧 ∈ 𝑃, ∪
(𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
| 26 | 25 | adantr 481 |
. . . . 5
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝐷) → (if(𝑧 ∈ 𝑃, ∪ (𝑃 ∖ {𝑧}), 𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
| 27 | 7, 26 | bitrd 268 |
. . . 4
⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) ∧ 𝑧 ∈ 𝐷) → (((𝑇‘𝑃)‘𝑧) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃)) |
| 28 | 27 | rabbidva 3188 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) →
{𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧} = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃}) |
| 29 | | incom 3805 |
. . . 4
⊢ (𝑃 ∩ 𝐷) = (𝐷 ∩ 𝑃) |
| 30 | | dfin5 3582 |
. . . 4
⊢ (𝐷 ∩ 𝑃) = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃} |
| 31 | 29, 30 | eqtri 2644 |
. . 3
⊢ (𝑃 ∩ 𝐷) = {𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃} |
| 32 | 28, 31 | syl6eqr 2674 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) →
{𝑧 ∈ 𝐷 ∣ ((𝑇‘𝑃)‘𝑧) ≠ 𝑧} = (𝑃 ∩ 𝐷)) |
| 33 | | simp2 1062 |
. . 3
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) → 𝑃 ⊆ 𝐷) |
| 34 | | df-ss 3588 |
. . 3
⊢ (𝑃 ⊆ 𝐷 ↔ (𝑃 ∩ 𝐷) = 𝑃) |
| 35 | 33, 34 | sylib 208 |
. 2
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) →
(𝑃 ∩ 𝐷) = 𝑃) |
| 36 | 5, 32, 35 | 3eqtrd 2660 |
1
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2𝑜) → dom
((𝑇‘𝑃) ∖ I ) = 𝑃) |