MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncom Structured version   Visualization version   GIF version

Theorem pmtr3ncom 17895
Description: Transpositions over sets with at least 3 elements are not commutative, see also the remark in [Rotman] p. 28. (Contributed by AV, 21-Mar-2019.)
Hypothesis
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtr3ncom ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Distinct variable groups:   𝐷,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑉(𝑓,𝑔)

Proof of Theorem pmtr3ncom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hashge3el3dif 13268 . 2 ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧))
2 simprl 794 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → 𝐷𝑉)
3 prssi 4353 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
43adantr 481 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑥, 𝑦} ⊆ 𝐷)
54ad2antrr 762 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑥, 𝑦} ⊆ 𝐷)
6 simplll 798 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝐷)
7 simplr 792 . . . . . . . . . 10 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → 𝑦𝐷)
87adantr 481 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝐷)
9 simpr1 1067 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑥𝑦)
10 pr2nelem 8827 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑥𝑦) → {𝑥, 𝑦} ≈ 2𝑜)
116, 8, 9, 10syl3anc 1326 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑥, 𝑦} ≈ 2𝑜)
1211adantr 481 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑥, 𝑦} ≈ 2𝑜)
13 pmtr3ncom.t . . . . . . . 8 𝑇 = (pmTrsp‘𝐷)
14 eqid 2622 . . . . . . . 8 ran 𝑇 = ran 𝑇
1513, 14pmtrrn 17877 . . . . . . 7 ((𝐷𝑉 ∧ {𝑥, 𝑦} ⊆ 𝐷 ∧ {𝑥, 𝑦} ≈ 2𝑜) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
162, 5, 12, 15syl3anc 1326 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇)
17 prssi 4353 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1817adantll 750 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → {𝑦, 𝑧} ⊆ 𝐷)
1918ad2antrr 762 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑦, 𝑧} ⊆ 𝐷)
20 simplr 792 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑧𝐷)
21 simpr3 1069 . . . . . . . . 9 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → 𝑦𝑧)
22 pr2nelem 8827 . . . . . . . . 9 ((𝑦𝐷𝑧𝐷𝑦𝑧) → {𝑦, 𝑧} ≈ 2𝑜)
238, 20, 21, 22syl3anc 1326 . . . . . . . 8 ((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → {𝑦, 𝑧} ≈ 2𝑜)
2423adantr 481 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → {𝑦, 𝑧} ≈ 2𝑜)
2513, 14pmtrrn 17877 . . . . . . 7 ((𝐷𝑉 ∧ {𝑦, 𝑧} ⊆ 𝐷 ∧ {𝑦, 𝑧} ≈ 2𝑜) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
262, 19, 24, 25syl3anc 1326 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇)
27 df-3an 1039 . . . . . . . . 9 ((𝑥𝐷𝑦𝐷𝑧𝐷) ↔ ((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷))
2827biimpri 218 . . . . . . . 8 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → (𝑥𝐷𝑦𝐷𝑧𝐷))
2928ad2antrr 762 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑥𝐷𝑦𝐷𝑧𝐷))
30 simplr 792 . . . . . . 7 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → (𝑥𝑦𝑥𝑧𝑦𝑧))
31 eqid 2622 . . . . . . . 8 (𝑇‘{𝑥, 𝑦}) = (𝑇‘{𝑥, 𝑦})
32 eqid 2622 . . . . . . . 8 (𝑇‘{𝑦, 𝑧}) = (𝑇‘{𝑦, 𝑧})
3313, 31, 32pmtr3ncomlem2 17894 . . . . . . 7 ((𝐷𝑉 ∧ (𝑥𝐷𝑦𝐷𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
342, 29, 30, 33syl3anc 1326 . . . . . 6 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
35 coeq2 5280 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑔𝑓) = (𝑔 ∘ (𝑇‘{𝑥, 𝑦})))
36 coeq1 5279 . . . . . . . 8 (𝑓 = (𝑇‘{𝑥, 𝑦}) → (𝑓𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔))
3735, 36neeq12d 2855 . . . . . . 7 (𝑓 = (𝑇‘{𝑥, 𝑦}) → ((𝑔𝑓) ≠ (𝑓𝑔) ↔ (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔)))
38 coeq1 5279 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → (𝑔 ∘ (𝑇‘{𝑥, 𝑦})) = ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})))
39 coeq2 5280 . . . . . . . 8 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) = ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧})))
4038, 39neeq12d 2855 . . . . . . 7 (𝑔 = (𝑇‘{𝑦, 𝑧}) → ((𝑔 ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ 𝑔) ↔ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))))
4137, 40rspc2ev 3324 . . . . . 6 (((𝑇‘{𝑥, 𝑦}) ∈ ran 𝑇 ∧ (𝑇‘{𝑦, 𝑧}) ∈ ran 𝑇 ∧ ((𝑇‘{𝑦, 𝑧}) ∘ (𝑇‘{𝑥, 𝑦})) ≠ ((𝑇‘{𝑥, 𝑦}) ∘ (𝑇‘{𝑦, 𝑧}))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4216, 26, 34, 41syl3anc 1326 . . . . 5 (((((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) ∧ (𝑥𝑦𝑥𝑧𝑦𝑧)) ∧ (𝐷𝑉 ∧ 3 ≤ (#‘𝐷))) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
4342exp31 630 . . . 4 (((𝑥𝐷𝑦𝐷) ∧ 𝑧𝐷) → ((𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4443rexlimdva 3031 . . 3 ((𝑥𝐷𝑦𝐷) → (∃𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))))
4544rexlimivv 3036 . 2 (∃𝑥𝐷𝑦𝐷𝑧𝐷 (𝑥𝑦𝑥𝑧𝑦𝑧) → ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔)))
461, 45mpcom 38 1 ((𝐷𝑉 ∧ 3 ≤ (#‘𝐷)) → ∃𝑓 ∈ ran 𝑇𝑔 ∈ ran 𝑇(𝑔𝑓) ≠ (𝑓𝑔))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  wss 3574  {cpr 4179   class class class wbr 4653  ran crn 5115  ccom 5118  cfv 5888  2𝑜c2o 7554  cen 7952  cle 10075  3c3 11071  #chash 13117  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-pmtr 17862
This theorem is referenced by:  pgrpgt2nabl  42147
  Copyright terms: Public domain W3C validator