Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridf1o Structured version   Visualization version   GIF version

Theorem pmtridf1o 29856
Description: Transpositions of 𝑋 and 𝑌 (understood to be the identity when 𝑋 = 𝑌), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridf1o (𝜑𝑇:𝐴1-1-onto𝐴)

Proof of Theorem pmtridf1o
StepHypRef Expression
1 pmtridf1o.t . . . 4 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
2 iftrue 4092 . . . . 5 (𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
32adantl 482 . . . 4 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
41, 3syl5eq 2668 . . 3 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
5 f1oi 6174 . . . 4 ( I ↾ 𝐴):𝐴1-1-onto𝐴
65a1i 11 . . 3 ((𝜑𝑋 = 𝑌) → ( I ↾ 𝐴):𝐴1-1-onto𝐴)
7 f1oeq1 6127 . . . 4 (𝑇 = ( I ↾ 𝐴) → (𝑇:𝐴1-1-onto𝐴 ↔ ( I ↾ 𝐴):𝐴1-1-onto𝐴))
87biimpar 502 . . 3 ((𝑇 = ( I ↾ 𝐴) ∧ ( I ↾ 𝐴):𝐴1-1-onto𝐴) → 𝑇:𝐴1-1-onto𝐴)
94, 6, 8syl2anc 693 . 2 ((𝜑𝑋 = 𝑌) → 𝑇:𝐴1-1-onto𝐴)
10 simpr 477 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1110neneqd 2799 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
12 iffalse 4095 . . . . . 6 𝑋 = 𝑌 → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1311, 12syl 17 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
141, 13syl5eq 2668 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
15 pmtridf1o.a . . . . . 6 (𝜑𝐴𝑉)
1615adantr 481 . . . . 5 ((𝜑𝑋𝑌) → 𝐴𝑉)
17 pmtridf1o.x . . . . . . 7 (𝜑𝑋𝐴)
1817adantr 481 . . . . . 6 ((𝜑𝑋𝑌) → 𝑋𝐴)
19 pmtridf1o.y . . . . . . 7 (𝜑𝑌𝐴)
2019adantr 481 . . . . . 6 ((𝜑𝑋𝑌) → 𝑌𝐴)
2118, 20prssd 4354 . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ 𝐴)
22 pr2nelem 8827 . . . . . 6 ((𝑋𝐴𝑌𝐴𝑋𝑌) → {𝑋, 𝑌} ≈ 2𝑜)
2318, 20, 10, 22syl3anc 1326 . . . . 5 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ≈ 2𝑜)
24 eqid 2622 . . . . . 6 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
25 eqid 2622 . . . . . 6 ran (pmTrsp‘𝐴) = ran (pmTrsp‘𝐴)
2624, 25pmtrrn 17877 . . . . 5 ((𝐴𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐴 ∧ {𝑋, 𝑌} ≈ 2𝑜) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴))
2716, 21, 23, 26syl3anc 1326 . . . 4 ((𝜑𝑋𝑌) → ((pmTrsp‘𝐴)‘{𝑋, 𝑌}) ∈ ran (pmTrsp‘𝐴))
2814, 27eqeltrd 2701 . . 3 ((𝜑𝑋𝑌) → 𝑇 ∈ ran (pmTrsp‘𝐴))
2924, 25pmtrff1o 17883 . . 3 (𝑇 ∈ ran (pmTrsp‘𝐴) → 𝑇:𝐴1-1-onto𝐴)
3028, 29syl 17 . 2 ((𝜑𝑋𝑌) → 𝑇:𝐴1-1-onto𝐴)
319, 30pm2.61dane 2881 1 (𝜑𝑇:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wss 3574  ifcif 4086  {cpr 4179   class class class wbr 4653   I cid 5023  ran crn 5115  cres 5116  1-1-ontowf1o 5887  cfv 5888  2𝑜c2o 7554  cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  reprpmtf1o  30704  hgt750lema  30735
  Copyright terms: Public domain W3C validator