![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntrval | Structured version Visualization version GIF version |
Description: Define the residual of the second Chebyshev function. The goal is to have 𝑅(𝑥) ∈ 𝑜(𝑥), or 𝑅(𝑥) / 𝑥 ⇝𝑟 0. (Contributed by Mario Carneiro, 8-Apr-2016.) |
Ref | Expression |
---|---|
pntrval.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
Ref | Expression |
---|---|
pntrval | ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . 3 ⊢ (𝑎 = 𝐴 → (ψ‘𝑎) = (ψ‘𝐴)) | |
2 | id 22 | . . 3 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
3 | 1, 2 | oveq12d 6668 | . 2 ⊢ (𝑎 = 𝐴 → ((ψ‘𝑎) − 𝑎) = ((ψ‘𝐴) − 𝐴)) |
4 | pntrval.r | . 2 ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) | |
5 | ovex 6678 | . 2 ⊢ ((ψ‘𝐴) − 𝐴) ∈ V | |
6 | 3, 4, 5 | fvmpt 6282 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝑅‘𝐴) = ((ψ‘𝐴) − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 − cmin 10266 ℝ+crp 11832 ψcchp 24819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 |
This theorem is referenced by: pntrmax 25253 pntrsumo1 25254 selbergr 25257 selberg3r 25258 selberg4r 25259 pntrlog2bndlem2 25267 pntrlog2bndlem4 25269 pntrlog2bnd 25273 pntpbnd1a 25274 pntibndlem2 25280 pntlem3 25298 |
Copyright terms: Public domain | W3C validator |