| Step | Hyp | Ref
| Expression |
| 1 | | rpssre 11843 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
| 2 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 3 | 2 | subcn 22669 |
. . . . . . . . . . . 12
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 4 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) →
− ∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 5 | | ssid 3624 |
. . . . . . . . . . . . 13
⊢ ℂ
⊆ ℂ |
| 6 | | cncfmptid 22715 |
. . . . . . . . . . . . 13
⊢ ((ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)) |
| 7 | 5, 5, 6 | mp2an 708 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ) |
| 8 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝑝) ∈ (ℂ–cn→ℂ)) |
| 9 | | pntlem3.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 10 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈
ℝ+) |
| 11 | 10 | rpcnd 11874 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → 𝐶 ∈
ℂ) |
| 12 | 5 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) →
ℂ ⊆ ℂ) |
| 13 | | cncfmptc 22714 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ ℂ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ)) |
| 14 | 11, 12, 12, 13 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ 𝐶) ∈ (ℂ–cn→ℂ)) |
| 15 | | 3nn0 11310 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ0 |
| 16 | 2 | expcn 22675 |
. . . . . . . . . . . . . 14
⊢ (3 ∈
ℕ0 → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 17 | 15, 16 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
| 18 | 2 | cncfcn1 22713 |
. . . . . . . . . . . . 13
⊢
(ℂ–cn→ℂ) =
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
| 19 | 17, 18 | syl6eleqr 2712 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝↑3)) ∈
(ℂ–cn→ℂ)) |
| 20 | 14, 19 | mulcncf 23215 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝐶 · (𝑝↑3))) ∈ (ℂ–cn→ℂ)) |
| 21 | 2, 4, 8, 20 | cncfmpt2f 22717 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ)) |
| 22 | | pntlem3.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} |
| 23 | | ssrab2 3687 |
. . . . . . . . . . . . . . 15
⊢ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡} ⊆ (0[,]𝐴) |
| 24 | 22, 23 | eqsstri 3635 |
. . . . . . . . . . . . . 14
⊢ 𝑇 ⊆ (0[,]𝐴) |
| 25 | | 0re 10040 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 26 | | pntlem3.a |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 27 | 26 | rpred 11872 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 28 | | iccssre 12255 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0[,]𝐴) ⊆ ℝ) |
| 29 | 25, 27, 28 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0[,]𝐴) ⊆ ℝ) |
| 30 | 24, 29 | syl5ss 3614 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ⊆ ℝ) |
| 31 | | 0xr 10086 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ* |
| 32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℝ*) |
| 33 | 26 | rpxrd 11873 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 34 | 26 | rpge0d 11876 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ 𝐴) |
| 35 | | ubicc2 12289 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 0 ≤
𝐴) → 𝐴 ∈ (0[,]𝐴)) |
| 36 | 32, 33, 34, 35 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ (0[,]𝐴)) |
| 37 | | 1rp 11836 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ+ |
| 38 | | 1re 10039 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℝ |
| 39 | | elicopnf 12269 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 ∈
ℝ → (𝑧 ∈
(1[,)+∞) ↔ (𝑧
∈ ℝ ∧ 1 ≤ 𝑧))) |
| 40 | 38, 39 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑧 ∈ (1[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 1 ≤
𝑧))) |
| 41 | 40 | simprbda 653 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 𝑧 ∈
ℝ) |
| 42 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 0 ∈
ℝ) |
| 43 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 1 ∈
ℝ) |
| 44 | | 0lt1 10550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
1 |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 0 <
1) |
| 46 | 40 | simplbda 654 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 1 ≤ 𝑧) |
| 47 | 42, 43, 41, 45, 46 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 0 < 𝑧) |
| 48 | 41, 47 | elrpd 11869 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → 𝑧 ∈
ℝ+) |
| 49 | | pntlem3.A |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) → ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴) |
| 51 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑧 → (𝑅‘𝑥) = (𝑅‘𝑧)) |
| 52 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
| 53 | 51, 52 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑧 → ((𝑅‘𝑥) / 𝑥) = ((𝑅‘𝑧) / 𝑧)) |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → (abs‘((𝑅‘𝑥) / 𝑥)) = (abs‘((𝑅‘𝑧) / 𝑧))) |
| 55 | 54 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → ((abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴 ↔ (abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴)) |
| 56 | 55 | rspcv 3305 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℝ+
→ (∀𝑥 ∈
ℝ+ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝐴 → (abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴)) |
| 57 | 48, 50, 56 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ (1[,)+∞)) →
(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴) |
| 58 | 57 | ralrimiva 2966 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴) |
| 59 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 1 → (𝑦[,)+∞) =
(1[,)+∞)) |
| 60 | 59 | raleqdv 3144 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 1 → (∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴 ↔ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴)) |
| 61 | 60 | rspcev 3309 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ+ ∧ ∀𝑧 ∈ (1[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴) |
| 62 | 37, 58, 61 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴) |
| 63 | | breq2 4657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝐴 → ((abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴)) |
| 64 | 63 | rexralbidv 3058 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝐴 → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴)) |
| 65 | 64, 22 | elrab2 3366 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑇 ↔ (𝐴 ∈ (0[,]𝐴) ∧ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝐴)) |
| 66 | 36, 62, 65 | sylanbrc 698 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| 67 | | ne0i 3921 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑇 → 𝑇 ≠ ∅) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ≠ ∅) |
| 69 | | elicc2 12238 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (𝑡
∈ (0[,]𝐴) ↔
(𝑡 ∈ ℝ ∧ 0
≤ 𝑡 ∧ 𝑡 ≤ 𝐴))) |
| 70 | 25, 27, 69 | sylancr 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑡 ∈ (0[,]𝐴) ↔ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ∧ 𝑡 ≤ 𝐴))) |
| 71 | 70 | biimpa 501 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]𝐴)) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ∧ 𝑡 ≤ 𝐴)) |
| 72 | 71 | simp2d 1074 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]𝐴)) → 0 ≤ 𝑡) |
| 73 | 72 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]𝐴)) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡)) |
| 74 | 73 | ralrimiva 2966 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡)) |
| 75 | 22 | raleqi 3142 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
𝑇 0 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤) |
| 76 | | breq2 4657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑡 → (0 ≤ 𝑤 ↔ 0 ≤ 𝑡)) |
| 77 | 76 | ralrab2 3372 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑤 ∈
{𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+
∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡)) |
| 78 | 75, 77 | bitri 264 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝑇 0 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 0 ≤ 𝑡)) |
| 79 | 74, 78 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑤 ∈ 𝑇 0 ≤ 𝑤) |
| 80 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
| 81 | 80 | ralbidv 2986 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑇 0 ≤ 𝑤)) |
| 82 | 81 | rspcev 3309 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑇 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) |
| 83 | 25, 79, 82 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) |
| 84 | | infrecl 11005 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) → inf(𝑇, ℝ, < ) ∈
ℝ) |
| 85 | 30, 68, 83, 84 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (𝜑 → inf(𝑇, ℝ, < ) ∈
ℝ) |
| 86 | 85 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝜑 → inf(𝑇, ℝ, < ) ∈
ℂ) |
| 87 | 86 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) →
inf(𝑇, ℝ, < )
∈ ℂ) |
| 88 | | elrp 11834 |
. . . . . . . . . . . . . 14
⊢
(inf(𝑇, ℝ,
< ) ∈ ℝ+ ↔ (inf(𝑇, ℝ, < ) ∈ ℝ ∧ 0
< inf(𝑇, ℝ, <
))) |
| 89 | 88 | biimpri 218 |
. . . . . . . . . . . . 13
⊢
((inf(𝑇, ℝ,
< ) ∈ ℝ ∧ 0 < inf(𝑇, ℝ, < )) → inf(𝑇, ℝ, < ) ∈
ℝ+) |
| 90 | 85, 89 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) →
inf(𝑇, ℝ, < )
∈ ℝ+) |
| 91 | | 3z 11410 |
. . . . . . . . . . . 12
⊢ 3 ∈
ℤ |
| 92 | | rpexpcl 12879 |
. . . . . . . . . . . 12
⊢
((inf(𝑇, ℝ,
< ) ∈ ℝ+ ∧ 3 ∈ ℤ) → (inf(𝑇, ℝ, < )↑3) ∈
ℝ+) |
| 93 | 90, 91, 92 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) →
(inf(𝑇, ℝ, <
)↑3) ∈ ℝ+) |
| 94 | 10, 93 | rpmulcld 11888 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈
ℝ+) |
| 95 | | cncfi 22697 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) ∈ (ℂ–cn→ℂ) ∧ inf(𝑇, ℝ, < ) ∈ ℂ ∧
(𝐶 · (inf(𝑇, ℝ, < )↑3))
∈ ℝ+) → ∃𝑠 ∈ ℝ+ ∀𝑢 ∈ ℂ
((abs‘(𝑢 −
inf(𝑇, ℝ, < )))
< 𝑠 →
(abs‘(((𝑝 ∈
ℂ ↦ (𝑝 −
(𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 96 | 21, 87, 94, 95 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) →
∃𝑠 ∈
ℝ+ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 97 | 85 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ inf(𝑇, ℝ, <
) ∈ ℝ) |
| 98 | | rphalfcl 11858 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈ ℝ+
→ (𝑠 / 2) ∈
ℝ+) |
| 99 | 98 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (𝑠 / 2) ∈
ℝ+) |
| 100 | 97, 99 | ltaddrpd 11905 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ inf(𝑇, ℝ, <
) < (inf(𝑇, ℝ,
< ) + (𝑠 /
2))) |
| 101 | 99 | rpred 11872 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (𝑠 / 2) ∈
ℝ) |
| 102 | 97, 101 | readdcld 10069 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (inf(𝑇, ℝ,
< ) + (𝑠 / 2)) ∈
ℝ) |
| 103 | 97, 102 | ltnled 10184 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (inf(𝑇, ℝ,
< ) < (inf(𝑇,
ℝ, < ) + (𝑠 / 2))
↔ ¬ (inf(𝑇,
ℝ, < ) + (𝑠 / 2))
≤ inf(𝑇, ℝ, <
))) |
| 104 | 100, 103 | mpbid 222 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ ¬ (inf(𝑇,
ℝ, < ) + (𝑠 / 2))
≤ inf(𝑇, ℝ, <
)) |
| 105 | | ax-resscn 9993 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
| 106 | 30, 105 | syl6ss 3615 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ⊆ ℂ) |
| 107 | 106 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ 𝑇 ⊆
ℂ) |
| 108 | | ssralv 3666 |
. . . . . . . . . . . . 13
⊢ (𝑇 ⊆ ℂ →
(∀𝑢 ∈ ℂ
((abs‘(𝑢 −
inf(𝑇, ℝ, < )))
< 𝑠 →
(abs‘(((𝑝 ∈
ℂ ↦ (𝑝 −
(𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
∀𝑢 ∈ 𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3))))) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (∀𝑢 ∈
ℂ ((abs‘(𝑢
− inf(𝑇, ℝ,
< ))) < 𝑠 →
(abs‘(((𝑝 ∈
ℂ ↦ (𝑝 −
(𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
∀𝑢 ∈ 𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3))))) |
| 110 | 30 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ 𝑇 ⊆
ℝ) |
| 111 | 110 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 𝑢 ∈ ℝ) |
| 112 | 102 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) |
| 113 | 111, 112 | ltnled 10184 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ↔ ¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 114 | 85 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → inf(𝑇, ℝ, < ) ∈
ℝ) |
| 115 | 101 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑠 / 2) ∈ ℝ) |
| 116 | 114, 115 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) ∈
ℝ) |
| 117 | 97, 99 | ltsubrpd 11904 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (inf(𝑇, ℝ,
< ) − (𝑠 / 2))
< inf(𝑇, ℝ, <
)) |
| 118 | 117 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < inf(𝑇, ℝ, <
)) |
| 119 | 30 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 𝑇 ⊆ ℝ) |
| 120 | 83 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) |
| 121 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 𝑢 ∈ 𝑇) |
| 122 | | infrelb 11008 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑇 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤 ∧ 𝑢 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢) |
| 123 | 119, 120,
121, 122 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ 𝑢) |
| 124 | 116, 114,
111, 118, 123 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢) |
| 125 | 111, 114,
115 | absdifltd 14172 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ↔ ((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢 ∧ 𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))))) |
| 126 | 125 | biimprd 238 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (((inf(𝑇, ℝ, < ) − (𝑠 / 2)) < 𝑢 ∧ 𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2))) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2))) |
| 127 | 124, 126 | mpand 711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2))) |
| 128 | | rphalflt 11860 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℝ+
→ (𝑠 / 2) < 𝑠) |
| 129 | 128 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑠 / 2) < 𝑠) |
| 130 | 111, 114 | resubcld 10458 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈
ℝ) |
| 131 | 130 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 − inf(𝑇, ℝ, < )) ∈
ℂ) |
| 132 | 131 | abscld 14175 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) ∈
ℝ) |
| 133 | | rpre 11839 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℝ+
→ 𝑠 ∈
ℝ) |
| 134 | 133 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 𝑠 ∈ ℝ) |
| 135 | | lttr 10114 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((abs‘(𝑢
− inf(𝑇, ℝ,
< ))) ∈ ℝ ∧ (𝑠 / 2) ∈ ℝ ∧ 𝑠 ∈ ℝ) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠)) |
| 136 | 132, 115,
134, 135 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) ∧ (𝑠 / 2) < 𝑠) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠)) |
| 137 | 129, 136 | mpan2d 710 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < (𝑠 / 2) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠)) |
| 138 | 127, 137 | syld 47 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 < (inf(𝑇, ℝ, < ) + (𝑠 / 2)) → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠)) |
| 139 | 113, 138 | sylbird 250 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (¬ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢 → (abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠)) |
| 140 | 139 | con1d 139 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (¬
(abs‘(𝑢 −
inf(𝑇, ℝ, < )))
< 𝑠 → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 141 | 111 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 𝑢 ∈ ℂ) |
| 142 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = 𝑢 → 𝑝 = 𝑢) |
| 143 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = 𝑢 → (𝑝↑3) = (𝑢↑3)) |
| 144 | 143 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = 𝑢 → (𝐶 · (𝑝↑3)) = (𝐶 · (𝑢↑3))) |
| 145 | 142, 144 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = 𝑢 → (𝑝 − (𝐶 · (𝑝↑3))) = (𝑢 − (𝐶 · (𝑢↑3)))) |
| 146 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) = (𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3)))) |
| 147 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 − (𝐶 · (𝑢↑3))) ∈ V |
| 148 | 145, 146,
147 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3)))) |
| 149 | 141, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) = (𝑢 − (𝐶 · (𝑢↑3)))) |
| 150 | 87 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → inf(𝑇, ℝ, < ) ∈
ℂ) |
| 151 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = inf(𝑇, ℝ, < ) → 𝑝 = inf(𝑇, ℝ, < )) |
| 152 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = inf(𝑇, ℝ, < ) → (𝑝↑3) = (inf(𝑇, ℝ, < )↑3)) |
| 153 | 152 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 = inf(𝑇, ℝ, < ) → (𝐶 · (𝑝↑3)) = (𝐶 · (inf(𝑇, ℝ, < )↑3))) |
| 154 | 151, 153 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 = inf(𝑇, ℝ, < ) → (𝑝 − (𝐶 · (𝑝↑3))) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 155 | | ovex 6678 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(inf(𝑇, ℝ,
< ) − (𝐶 ·
(inf(𝑇, ℝ, <
)↑3))) ∈ V |
| 156 | 154, 146,
155 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(inf(𝑇, ℝ,
< ) ∈ ℂ → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 157 | 150, 156 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )) = (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 158 | 149, 157 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < ))) = ((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, <
)↑3))))) |
| 159 | 158 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) = (abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, <
)↑3)))))) |
| 160 | 159 | breq1d 4663 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔
(abs‘((𝑢 −
(𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 161 | 9 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 162 | 161 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 𝐶 ∈ ℝ) |
| 163 | | reexpcl 12877 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑢 ∈ ℝ ∧ 3 ∈
ℕ0) → (𝑢↑3) ∈ ℝ) |
| 164 | 111, 15, 163 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢↑3) ∈ ℝ) |
| 165 | 162, 164 | remulcld 10070 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝐶 · (𝑢↑3)) ∈ ℝ) |
| 166 | 111, 165 | resubcld 10458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ ℝ) |
| 167 | 15 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → 3 ∈
ℕ0) |
| 168 | 114, 167 | reexpcld 13025 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (inf(𝑇, ℝ, < )↑3) ∈
ℝ) |
| 169 | 162, 168 | remulcld 10070 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈
ℝ) |
| 170 | 114, 169 | resubcld 10458 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) ∈
ℝ) |
| 171 | 166, 170,
169 | absdifltd 14172 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) ↔
(((inf(𝑇, ℝ, < )
− (𝐶 ·
(inf(𝑇, ℝ, <
)↑3))) − (𝐶
· (inf(𝑇, ℝ,
< )↑3))) < (𝑢
− (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, <
)↑3)))))) |
| 172 | 169 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝐶 · (inf(𝑇, ℝ, < )↑3)) ∈
ℂ) |
| 173 | 150, 172 | npcand 10396 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) = inf(𝑇, ℝ, <
)) |
| 174 | 173 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) ↔ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ))) |
| 175 | | pntlem3.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) |
| 176 | 175 | ad4ant14 1293 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) |
| 177 | | infrelb 11008 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑇 ⊆ ℝ ∧
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤 ∧ (𝑢 − (𝐶 · (𝑢↑3))) ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3)))) |
| 178 | 119, 120,
176, 177 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → inf(𝑇, ℝ, < ) ≤ (𝑢 − (𝐶 · (𝑢↑3)))) |
| 179 | 114, 166,
178 | lensymd 10188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ¬ (𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < )) |
| 180 | 179 | pm2.21d 118 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < inf(𝑇, ℝ, < ) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 181 | 174, 180 | sylbid 230 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
(inf(𝑇, ℝ, < ) +
(𝑠 / 2)) ≤ 𝑢)) |
| 182 | 181 | adantld 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) < (𝑢 − (𝐶 · (𝑢↑3))) ∧ (𝑢 − (𝐶 · (𝑢↑3))) < ((inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))) + (𝐶 · (inf(𝑇, ℝ, < )↑3)))) →
(inf(𝑇, ℝ, < ) +
(𝑠 / 2)) ≤ 𝑢)) |
| 183 | 171, 182 | sylbid 230 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((abs‘((𝑢 − (𝐶 · (𝑢↑3))) − (inf(𝑇, ℝ, < ) − (𝐶 · (inf(𝑇, ℝ, < )↑3))))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 184 | 160, 183 | sylbid 230 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → ((abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3)) → (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 185 | 140, 184 | jad 174 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
∧ 𝑢 ∈ 𝑇) → (((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
(inf(𝑇, ℝ, < ) +
(𝑠 / 2)) ≤ 𝑢)) |
| 186 | 185 | ralimdva 2962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (∀𝑢 ∈
𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
∀𝑢 ∈ 𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 187 | 68 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ 𝑇 ≠
∅) |
| 188 | 83 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ ∃𝑥 ∈
ℝ ∀𝑤 ∈
𝑇 𝑥 ≤ 𝑤) |
| 189 | | infregelb 11007 |
. . . . . . . . . . . . . 14
⊢ (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) ∧ (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ∈ ℝ) → ((inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ inf(𝑇, ℝ, < ) ↔
∀𝑢 ∈ 𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 190 | 110, 187,
188, 102, 189 | syl31anc 1329 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ ((inf(𝑇, ℝ,
< ) + (𝑠 / 2)) ≤
inf(𝑇, ℝ, < )
↔ ∀𝑢 ∈
𝑇 (inf(𝑇, ℝ, < ) + (𝑠 / 2)) ≤ 𝑢)) |
| 191 | 186, 190 | sylibrd 249 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (∀𝑢 ∈
𝑇 ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
(inf(𝑇, ℝ, < ) +
(𝑠 / 2)) ≤ inf(𝑇, ℝ, <
))) |
| 192 | 109, 191 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ (∀𝑢 ∈
ℂ ((abs‘(𝑢
− inf(𝑇, ℝ,
< ))) < 𝑠 →
(abs‘(((𝑝 ∈
ℂ ↦ (𝑝 −
(𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, < )↑3))) →
(inf(𝑇, ℝ, < ) +
(𝑠 / 2)) ≤ inf(𝑇, ℝ, <
))) |
| 193 | 104, 192 | mtod 189 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) ∧ 𝑠 ∈ ℝ+)
→ ¬ ∀𝑢
∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 194 | 193 | nrexdv 3001 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 < inf(𝑇, ℝ, < )) → ¬
∃𝑠 ∈
ℝ+ ∀𝑢 ∈ ℂ ((abs‘(𝑢 − inf(𝑇, ℝ, < ))) < 𝑠 → (abs‘(((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘𝑢) − ((𝑝 ∈ ℂ ↦ (𝑝 − (𝐶 · (𝑝↑3))))‘inf(𝑇, ℝ, < )))) < (𝐶 · (inf(𝑇, ℝ, <
)↑3)))) |
| 195 | 96, 194 | pm2.65da 600 |
. . . . . . . 8
⊢ (𝜑 → ¬ 0 < inf(𝑇, ℝ, <
)) |
| 196 | 195 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → ¬ 0
< inf(𝑇, ℝ, <
)) |
| 197 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑇 ⊆
ℝ) |
| 198 | 68 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑇 ≠ ∅) |
| 199 | 83 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∃𝑥 ∈ ℝ
∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) |
| 200 | 133 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑠 ∈
ℝ) |
| 201 | | infregelb 11007 |
. . . . . . . . . 10
⊢ (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑇 𝑥 ≤ 𝑤) ∧ 𝑠 ∈ ℝ) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤 ∈ 𝑇 𝑠 ≤ 𝑤)) |
| 202 | 197, 198,
199, 200, 201 | syl31anc 1329 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑤 ∈ 𝑇 𝑠 ≤ 𝑤)) |
| 203 | 22 | raleqi 3142 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑇 𝑠 ≤ 𝑤 ↔ ∀𝑤 ∈ {𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}𝑠 ≤ 𝑤) |
| 204 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑡 → (𝑠 ≤ 𝑤 ↔ 𝑠 ≤ 𝑡)) |
| 205 | 204 | ralrab2 3372 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
{𝑡 ∈ (0[,]𝐴) ∣ ∃𝑦 ∈ ℝ+
∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡}𝑠 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 𝑠 ≤ 𝑡)) |
| 206 | 203, 205 | bitri 264 |
. . . . . . . . 9
⊢
(∀𝑤 ∈
𝑇 𝑠 ≤ 𝑤 ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 𝑠 ≤ 𝑡)) |
| 207 | 202, 206 | syl6bb 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) ↔ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 𝑠 ≤ 𝑡))) |
| 208 | | rpgt0 11844 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
→ 0 < 𝑠) |
| 209 | 208 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 0 <
𝑠) |
| 210 | | 0red 10041 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 0 ∈
ℝ) |
| 211 | 85 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → inf(𝑇, ℝ, < ) ∈
ℝ) |
| 212 | | ltletr 10129 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ 𝑠
∈ ℝ ∧ inf(𝑇,
ℝ, < ) ∈ ℝ) → ((0 < 𝑠 ∧ 𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, <
))) |
| 213 | 210, 200,
211, 212 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → ((0 <
𝑠 ∧ 𝑠 ≤ inf(𝑇, ℝ, < )) → 0 < inf(𝑇, ℝ, <
))) |
| 214 | 209, 213 | mpand 711 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (𝑠 ≤ inf(𝑇, ℝ, < ) → 0 < inf(𝑇, ℝ, <
))) |
| 215 | 207, 214 | sylbird 250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
(∀𝑡 ∈
(0[,]𝐴)(∃𝑦 ∈ ℝ+
∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 𝑠 ≤ 𝑡) → 0 < inf(𝑇, ℝ, < ))) |
| 216 | 196, 215 | mtod 189 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → ¬
∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 𝑠 ≤ 𝑡)) |
| 217 | | rexanali 2998 |
. . . . . 6
⊢
(∃𝑡 ∈
(0[,]𝐴)(∃𝑦 ∈ ℝ+
∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠 ≤ 𝑡) ↔ ¬ ∀𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → 𝑠 ≤ 𝑡)) |
| 218 | 216, 217 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠 ≤ 𝑡)) |
| 219 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → (𝑅‘𝑧) = (𝑅‘𝑥)) |
| 220 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
| 221 | 219, 220 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → ((𝑅‘𝑧) / 𝑧) = ((𝑅‘𝑥) / 𝑥)) |
| 222 | 221 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (abs‘((𝑅‘𝑧) / 𝑧)) = (abs‘((𝑅‘𝑥) / 𝑥))) |
| 223 | 222 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → ((abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡)) |
| 224 | 223 | cbvralv 3171 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
(𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ↔ ∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡) |
| 225 | | rpre 11839 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 226 | 225 | ad2antll 765 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑥 ∈
ℝ) |
| 227 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑦 ≤ 𝑥) |
| 228 | | simplr 792 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑦 ∈
ℝ+) |
| 229 | 228 | rpred 11872 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑦 ∈
ℝ) |
| 230 | | elicopnf 12269 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ≤ 𝑥))) |
| 231 | 229, 230 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → (𝑥 ∈ (𝑦[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝑦 ≤ 𝑥))) |
| 232 | 226, 227,
231 | mpbir2and 957 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑥 ∈ (𝑦[,)+∞)) |
| 233 | | pntlem3.r |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 234 | 233 | pntrval 25251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) = ((ψ‘𝑥) − 𝑥)) |
| 235 | 234 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → (𝑅‘𝑥) = ((ψ‘𝑥) − 𝑥)) |
| 236 | 235 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → ((𝑅‘𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥)) |
| 237 | | chpcl 24850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) |
| 238 | 226, 237 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(ψ‘𝑥) ∈
ℝ) |
| 239 | 238 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(ψ‘𝑥) ∈
ℂ) |
| 240 | | rpcn 11841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 241 | 240 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑥 ∈
ℂ) |
| 242 | | rpne0 11848 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
| 243 | 242 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑥 ≠ 0) |
| 244 | 239, 241,
241, 243 | divsubdird 10840 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(((ψ‘𝑥) −
𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥))) |
| 245 | 241, 243 | dividd 10799 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → (𝑥 / 𝑥) = 1) |
| 246 | 245 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1)) |
| 247 | 236, 244,
246 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(((ψ‘𝑥) / 𝑥) − 1) = ((𝑅‘𝑥) / 𝑥)) |
| 248 | 247 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(abs‘(((ψ‘𝑥) / 𝑥) − 1)) = (abs‘((𝑅‘𝑥) / 𝑥))) |
| 249 | 248 | breq1d 4663 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ↔ (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡)) |
| 250 | | simprr 796 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) → ¬ 𝑠 ≤ 𝑡) |
| 251 | 250 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → ¬
𝑠 ≤ 𝑡) |
| 252 | 29 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) → (0[,]𝐴) ⊆ ℝ) |
| 253 | 252 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(0[,]𝐴) ⊆
ℝ) |
| 254 | | simplrl 800 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) → 𝑡 ∈ (0[,]𝐴)) |
| 255 | 254 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑡 ∈ (0[,]𝐴)) |
| 256 | 253, 255 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑡 ∈
ℝ) |
| 257 | | simp-4r 807 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑠 ∈
ℝ+) |
| 258 | 257 | rpred 11872 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑠 ∈
ℝ) |
| 259 | 256, 258 | ltnled 10184 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → (𝑡 < 𝑠 ↔ ¬ 𝑠 ≤ 𝑡)) |
| 260 | 251, 259 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → 𝑡 < 𝑠) |
| 261 | 225, 237 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℝ) |
| 262 | | rerpdivcl 11861 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((ψ‘𝑥)
∈ ℝ ∧ 𝑥
∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
| 263 | 261, 262 | mpancom 703 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥) /
𝑥) ∈
ℝ) |
| 264 | 263 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
((ψ‘𝑥) / 𝑥) ∈
ℝ) |
| 265 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((ψ‘𝑥) /
𝑥) ∈ ℝ ∧ 1
∈ ℝ) → (((ψ‘𝑥) / 𝑥) − 1) ∈ ℝ) |
| 266 | 264, 38, 265 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(((ψ‘𝑥) / 𝑥) − 1) ∈
ℝ) |
| 267 | 266 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(((ψ‘𝑥) / 𝑥) − 1) ∈
ℂ) |
| 268 | 267 | abscld 14175 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈
ℝ) |
| 269 | | lelttr 10128 |
. . . . . . . . . . . . . . . . . 18
⊢
(((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ∈ ℝ ∧ 𝑡 ∈ ℝ ∧ 𝑠 ∈ ℝ) →
(((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ∧ 𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 270 | 268, 256,
258, 269 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
(((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 ∧ 𝑡 < 𝑠) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 271 | 260, 270 | mpan2d 710 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 272 | 249, 271 | sylbird 250 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) →
((abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 273 | 232, 272 | embantd 59 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ+)
∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑦 ≤ 𝑥 ∧ 𝑥 ∈ ℝ+)) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 274 | 273 | exp32 631 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) → (𝑦 ≤ 𝑥 → (𝑥 ∈ ℝ+ → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))) |
| 275 | 274 | com24 95 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) → ((𝑥 ∈ (𝑦[,)+∞) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡) → (𝑥 ∈ ℝ+ → (𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)))) |
| 276 | 275 | ralimdv2 2961 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) →
(∀𝑥 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 277 | 224, 276 | syl5bi 232 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) ∧ 𝑦 ∈ ℝ+) →
(∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → ∀𝑥 ∈ ℝ+ (𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 278 | 277 | reximdva 3017 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑡 ∈ (0[,]𝐴) ∧ ¬ 𝑠 ≤ 𝑡)) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 279 | 278 | anassrs 680 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ¬ 𝑠 ≤ 𝑡) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 280 | 279 | impancom 456 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) ∧ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡) → (¬ 𝑠 ≤ 𝑡 → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 281 | 280 | expimpd 629 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ 𝑡 ∈ (0[,]𝐴)) → ((∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠 ≤ 𝑡) → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 282 | 281 | rexlimdva 3031 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
(∃𝑡 ∈ (0[,]𝐴)(∃𝑦 ∈ ℝ+ ∀𝑧 ∈ (𝑦[,)+∞)(abs‘((𝑅‘𝑧) / 𝑧)) ≤ 𝑡 ∧ ¬ 𝑠 ≤ 𝑡) → ∃𝑦 ∈ ℝ+ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 283 | 218, 282 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑥 ∈ ℝ+ (𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 284 | | ssrexv 3667 |
. . . 4
⊢
(ℝ+ ⊆ ℝ → (∃𝑦 ∈ ℝ+ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 285 | 1, 283, 284 | mpsyl 68 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∃𝑦 ∈ ℝ
∀𝑥 ∈
ℝ+ (𝑦 ≤
𝑥 →
(abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 286 | 285 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+
(𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠)) |
| 287 | 263 | recnd 10068 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥) /
𝑥) ∈
ℂ) |
| 288 | 287 | rgen 2922 |
. . . 4
⊢
∀𝑥 ∈
ℝ+ ((ψ‘𝑥) / 𝑥) ∈ ℂ |
| 289 | 288 | a1i 11 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+
((ψ‘𝑥) / 𝑥) ∈
ℂ) |
| 290 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ+
⊆ ℝ) |
| 291 | | 1cnd 10056 |
. . 3
⊢ (𝜑 → 1 ∈
ℂ) |
| 292 | 289, 290,
291 | rlim2 14227 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ℝ+ ↦
((ψ‘𝑥) / 𝑥)) ⇝𝑟 1
↔ ∀𝑠 ∈
ℝ+ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ (𝑦 ≤ 𝑥 → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) < 𝑠))) |
| 293 | 286, 292 | mpbird 247 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((ψ‘𝑥) / 𝑥)) ⇝𝑟
1) |