MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Structured version   Visualization version   Unicode version

Theorem pntrval 25251
Description: Define the residual of the second Chebyshev function. The goal is to have  R ( x )  e.  o ( x ), or  R ( x )  /  x  ~~> r  0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrval  |-  ( A  e.  RR+  ->  ( R `
 A )  =  ( (ψ `  A
)  -  A ) )
Distinct variable group:    A, a
Allowed substitution hint:    R( a)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 6191 . . 3  |-  ( a  =  A  ->  (ψ `  a )  =  (ψ `  A ) )
2 id 22 . . 3  |-  ( a  =  A  ->  a  =  A )
31, 2oveq12d 6668 . 2  |-  ( a  =  A  ->  (
(ψ `  a )  -  a )  =  ( (ψ `  A
)  -  A ) )
4 pntrval.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
5 ovex 6678 . 2  |-  ( (ψ `  A )  -  A
)  e.  _V
63, 4, 5fvmpt 6282 1  |-  ( A  e.  RR+  ->  ( R `
 A )  =  ( (ψ `  A
)  -  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    - cmin 10266   RR+crp 11832  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  pntrmax  25253  pntrsumo1  25254  selbergr  25257  selberg3r  25258  selberg4r  25259  pntrlog2bndlem2  25267  pntrlog2bndlem4  25269  pntrlog2bnd  25273  pntpbnd1a  25274  pntibndlem2  25280  pntlem3  25298
  Copyright terms: Public domain W3C validator