MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergr Structured version   Visualization version   GIF version

Theorem selbergr 25257
Description: Selberg's symmetry formula, using the residual of the second Chebyshev function. Equation 10.6.2 of [Shapiro], p. 428. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
selbergr (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable groups:   𝑎,𝑑,𝑥   𝑅,𝑑,𝑥
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem selbergr
StepHypRef Expression
1 reex 10027 . . . . . . 7 ℝ ∈ V
2 rpssre 11843 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 4803 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 ovexd 6680 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) ∈ V)
6 ovexd 6680 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)) ∈ V)
7 eqidd 2623 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))))
8 eqidd 2623 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))
94, 5, 6, 7, 8offval2 6914 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))))
109trud 1493 . . 3 ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))
11 pntrval.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1211pntrf 25252 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
1312ffvelrni 6358 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1413recnd 10068 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℂ)
15 relogcl 24322 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
1615recnd 10068 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
1714, 16mulcld 10060 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((𝑅𝑥) · (log‘𝑥)) ∈ ℂ)
18 fzfid 12772 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (1...(⌊‘𝑥)) ∈ Fin)
19 elfznn 12370 . . . . . . . . . . . . 13 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
2019adantl 482 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
21 vmacl 24844 . . . . . . . . . . . 12 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
2220, 21syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℝ)
2322recnd 10068 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑑) ∈ ℂ)
24 rpre 11839 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
25 nndivre 11056 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
2624, 19, 25syl2an 494 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
27 chpcl 24850 . . . . . . . . . . . 12 ((𝑥 / 𝑑) ∈ ℝ → (ψ‘(𝑥 / 𝑑)) ∈ ℝ)
2826, 27syl 17 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) ∈ ℝ)
2928recnd 10068 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑑)) ∈ ℂ)
3023, 29mulcld 10060 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) ∈ ℂ)
3118, 30fsumcl 14464 . . . . . . . 8 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) ∈ ℂ)
3217, 31addcld 10059 . . . . . . 7 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ)
33 rpcn 11841 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
34 rpne0 11848 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
3532, 33, 34divcld 10801 . . . . . 6 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ)
3622, 20nndivred 11069 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) / 𝑑) ∈ ℝ)
3736recnd 10068 . . . . . . 7 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) / 𝑑) ∈ ℂ)
3818, 37fsumcl 14464 . . . . . 6 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) ∈ ℂ)
3935, 38, 16nnncan2d 10427 . . . . 5 (𝑥 ∈ ℝ+ → ((((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))
40 chpcl 24850 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4124, 40syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
4241recnd 10068 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
4342, 16mulcld 10060 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℂ)
4443, 31addcld 10059 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ)
4544, 33, 34divcld 10801 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) ∈ ℂ)
4645, 16, 16subsub4d 10423 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥))))
4711pntrval 25251 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
4847oveq1d 6665 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → ((𝑅𝑥) · (log‘𝑥)) = (((ψ‘𝑥) − 𝑥) · (log‘𝑥)))
4942, 33, 16subdird 10487 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) − 𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))))
5048, 49eqtrd 2656 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((𝑅𝑥) · (log‘𝑥)) = (((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))))
5150oveq1d 6665 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))))
5233, 16mulcld 10060 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 · (log‘𝑥)) ∈ ℂ)
5343, 31, 52addsubd 10413 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) = ((((ψ‘𝑥) · (log‘𝑥)) − (𝑥 · (log‘𝑥))) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))))
5451, 53eqtr4d 2659 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))))
5554oveq1d 6665 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥))
56 rpcnne0 11850 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
57 divsubdir 10721 . . . . . . . . . 10 (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · (log‘𝑥)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)))
5844, 52, 56, 57syl3anc 1326 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · (log‘𝑥))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)))
5916, 33, 34divcan3d 10806 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((𝑥 · (log‘𝑥)) / 𝑥) = (log‘𝑥))
6059oveq2d 6666 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · (log‘𝑥)) / 𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)))
6155, 58, 603eqtrd 2660 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)))
6261oveq1d 6665 . . . . . . 7 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (log‘𝑥)))
63162timesd 11275 . . . . . . . 8 (𝑥 ∈ ℝ+ → (2 · (log‘𝑥)) = ((log‘𝑥) + (log‘𝑥)))
6463oveq2d 6666 . . . . . . 7 (𝑥 ∈ ℝ+ → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((log‘𝑥) + (log‘𝑥))))
6546, 62, 643eqtr4d 2666 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) = (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))))
6665oveq1d 6665 . . . . 5 (𝑥 ∈ ℝ+ → ((((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (log‘𝑥)) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))))
6733, 38mulcld 10060 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ)
68 divsubdir 10721 . . . . . . 7 (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) ∈ ℂ ∧ (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)))
6932, 67, 56, 68syl3anc 1326 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)))
7017, 31, 67addsubassd 10412 . . . . . . . 8 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))))
7133adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
7271, 37mulcld 10060 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Λ‘𝑑) / 𝑑)) ∈ ℂ)
7318, 30, 72fsumsub 14520 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑))))
7426recnd 10068 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℂ)
7523, 29, 74subdid 10486 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑))))
7619nnrpd 11870 . . . . . . . . . . . . . . 15 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
77 rpdivcl 11856 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
7876, 77sylan2 491 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
7911pntrval 25251 . . . . . . . . . . . . . 14 ((𝑥 / 𝑑) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑)))
8078, 79syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑑)) = ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑)))
8180oveq2d 6666 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = ((Λ‘𝑑) · ((ψ‘(𝑥 / 𝑑)) − (𝑥 / 𝑑))))
8220nnrpd 11870 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
83 rpcnne0 11850 . . . . . . . . . . . . . . 15 (𝑑 ∈ ℝ+ → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
8482, 83syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
85 div12 10707 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (Λ‘𝑑) ∈ ℂ ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → (𝑥 · ((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑)))
8671, 23, 84, 85syl3anc 1326 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Λ‘𝑑) / 𝑑)) = ((Λ‘𝑑) · (𝑥 / 𝑑)))
8786oveq2d 6666 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − ((Λ‘𝑑) · (𝑥 / 𝑑))))
8875, 81, 873eqtr4d 2666 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑑 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = (((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))))
8988sumeq2dv 14433 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))(((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · ((Λ‘𝑑) / 𝑑))))
9018, 33, 37fsummulc2 14516 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑)))
9190oveq2d 6666 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − Σ𝑑 ∈ (1...(⌊‘𝑥))(𝑥 · ((Λ‘𝑑) / 𝑑))))
9273, 89, 913eqtr4rd 2667 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑))))
9392oveq2d 6666 . . . . . . . 8 (𝑥 ∈ ℝ+ → (((𝑅𝑥) · (log‘𝑥)) + (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))) = (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))))
9470, 93eqtrd 2656 . . . . . . 7 (𝑥 ∈ ℝ+ → ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) = (((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))))
9594oveq1d 6665 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) − (𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))) / 𝑥) = ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
9638, 33, 34divcan3d 10806 . . . . . . 7 (𝑥 ∈ ℝ+ → ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥) = Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑))
9796oveq2d 6666 . . . . . 6 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − ((𝑥 · Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) / 𝑥)) = (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)))
9869, 95, 973eqtr3rd 2665 . . . . 5 (𝑥 ∈ ℝ+ → (((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑)) = ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
9939, 66, 983eqtr3d 2664 . . . 4 (𝑥 ∈ ℝ+ → ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) = ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
10099mpteq2ia 4740 . . 3 (𝑥 ∈ ℝ+ ↦ ((((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥))) − (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
10110, 100eqtri 2644 . 2 ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥))
102 selberg2 25240 . . 3 (𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
103 vmadivsum 25171 . . 3 (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1)
104 o1sub 14346 . . 3 (((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1))
105102, 103, 104mp2an 708 . 2 ((𝑥 ∈ ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (ψ‘(𝑥 / 𝑑)))) / 𝑥) − (2 · (log‘𝑥)))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) / 𝑑) − (log‘𝑥)))) ∈ 𝑂(1)
106101, 105eqeltrri 2698 1 (𝑥 ∈ ℝ+ ↦ ((((𝑅𝑥) · (log‘𝑥)) + Σ𝑑 ∈ (1...(⌊‘𝑥))((Λ‘𝑑) · (𝑅‘(𝑥 / 𝑑)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  Vcvv 3200  cmpt 4729  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  +crp 11832  ...cfz 12326  cfl 12591  𝑂(1)co1 14217  Σcsu 14416  logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator