MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumo1 Structured version   Visualization version   GIF version

Theorem pntrsumo1 25254
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumo1 (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1)
Distinct variable groups:   𝑛,𝑎,𝑥   𝑅,𝑛,𝑥
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumo1
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 1re 10039 . . . . . . . . . . 11 1 ∈ ℝ
2 elicopnf 12269 . . . . . . . . . . 11 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
31, 2ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥))
43simplbi 476 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
5 0red 10041 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → 0 ∈ ℝ)
6 1red 10055 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → 1 ∈ ℝ)
7 0lt1 10550 . . . . . . . . . . 11 0 < 1
87a1i 11 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → 0 < 1)
93simprbi 480 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
105, 6, 4, 8, 9ltletrd 10197 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → 0 < 𝑥)
114, 10elrpd 11869 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+)
1211ssriv 3607 . . . . . . 7 (1[,)+∞) ⊆ ℝ+
1312a1i 11 . . . . . 6 (⊤ → (1[,)+∞) ⊆ ℝ+)
14 rpssre 11843 . . . . . 6 + ⊆ ℝ
1513, 14syl6ss 3615 . . . . 5 (⊤ → (1[,)+∞) ⊆ ℝ)
1615resmptd 5452 . . . 4 (⊤ → ((𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ↾ (1[,)+∞)) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
17 oveq2 6658 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
18 oveq1 6657 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
1918fveq2d 6195 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (ψ‘(𝑚 − 1)) = (ψ‘(𝑛 − 1)))
2019, 18oveq12d 6668 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = ((ψ‘(𝑛 − 1)) − (𝑛 − 1)))
2117, 20jca 554 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((1 / 𝑚) = (1 / 𝑛) ∧ ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = ((ψ‘(𝑛 − 1)) − (𝑛 − 1))))
22 oveq2 6658 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → (1 / 𝑚) = (1 / (𝑛 + 1)))
23 oveq1 6657 . . . . . . . . . . . . . 14 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
2423fveq2d 6195 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → (ψ‘(𝑚 − 1)) = (ψ‘((𝑛 + 1) − 1)))
2524, 23oveq12d 6668 . . . . . . . . . . . 12 (𝑚 = (𝑛 + 1) → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)))
2622, 25jca 554 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((1 / 𝑚) = (1 / (𝑛 + 1)) ∧ ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1))))
27 oveq2 6658 . . . . . . . . . . . . 13 (𝑚 = 1 → (1 / 𝑚) = (1 / 1))
28 1div1e1 10717 . . . . . . . . . . . . 13 (1 / 1) = 1
2927, 28syl6eq 2672 . . . . . . . . . . . 12 (𝑚 = 1 → (1 / 𝑚) = 1)
30 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
31 1m1e0 11089 . . . . . . . . . . . . . . . . 17 (1 − 1) = 0
3230, 31syl6eq 2672 . . . . . . . . . . . . . . . 16 (𝑚 = 1 → (𝑚 − 1) = 0)
3332fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = (ψ‘0))
34 2pos 11112 . . . . . . . . . . . . . . . 16 0 < 2
35 0re 10040 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
36 chpeq0 24933 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ → ((ψ‘0) = 0 ↔ 0 < 2))
3735, 36ax-mp 5 . . . . . . . . . . . . . . . 16 ((ψ‘0) = 0 ↔ 0 < 2)
3834, 37mpbir 221 . . . . . . . . . . . . . . 15 (ψ‘0) = 0
3933, 38syl6eq 2672 . . . . . . . . . . . . . 14 (𝑚 = 1 → (ψ‘(𝑚 − 1)) = 0)
4039, 32oveq12d 6668 . . . . . . . . . . . . 13 (𝑚 = 1 → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = (0 − 0))
41 0m0e0 11130 . . . . . . . . . . . . 13 (0 − 0) = 0
4240, 41syl6eq 2672 . . . . . . . . . . . 12 (𝑚 = 1 → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = 0)
4329, 42jca 554 . . . . . . . . . . 11 (𝑚 = 1 → ((1 / 𝑚) = 1 ∧ ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = 0))
44 oveq2 6658 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → (1 / 𝑚) = (1 / ((⌊‘𝑥) + 1)))
45 oveq1 6657 . . . . . . . . . . . . . 14 (𝑚 = ((⌊‘𝑥) + 1) → (𝑚 − 1) = (((⌊‘𝑥) + 1) − 1))
4645fveq2d 6195 . . . . . . . . . . . . 13 (𝑚 = ((⌊‘𝑥) + 1) → (ψ‘(𝑚 − 1)) = (ψ‘(((⌊‘𝑥) + 1) − 1)))
4746, 45oveq12d 6668 . . . . . . . . . . . 12 (𝑚 = ((⌊‘𝑥) + 1) → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1)))
4844, 47jca 554 . . . . . . . . . . 11 (𝑚 = ((⌊‘𝑥) + 1) → ((1 / 𝑚) = (1 / ((⌊‘𝑥) + 1)) ∧ ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) = ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))))
4911rprege0d 11879 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
50 flge0nn0 12621 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℕ0)
52 nn0p1nn 11332 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ ℕ0 → ((⌊‘𝑥) + 1) ∈ ℕ)
5351, 52syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → ((⌊‘𝑥) + 1) ∈ ℕ)
54 nnuz 11723 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
5553, 54syl6eleq 2711 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → ((⌊‘𝑥) + 1) ∈ (ℤ‘1))
56 elfznn 12370 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...((⌊‘𝑥) + 1)) → 𝑚 ∈ ℕ)
5756adantl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℕ)
5857nnrecred 11066 . . . . . . . . . . . 12 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (1 / 𝑚) ∈ ℝ)
5958recnd 10068 . . . . . . . . . . 11 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (1 / 𝑚) ∈ ℂ)
6057nnred 11035 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → 𝑚 ∈ ℝ)
61 peano2rem 10348 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℝ → (𝑚 − 1) ∈ ℝ)
6260, 61syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (𝑚 − 1) ∈ ℝ)
63 chpcl 24850 . . . . . . . . . . . . . 14 ((𝑚 − 1) ∈ ℝ → (ψ‘(𝑚 − 1)) ∈ ℝ)
6462, 63syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → (ψ‘(𝑚 − 1)) ∈ ℝ)
6564, 62resubcld 10458 . . . . . . . . . . . 12 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) ∈ ℝ)
6665recnd 10068 . . . . . . . . . . 11 ((𝑥 ∈ (1[,)+∞) ∧ 𝑚 ∈ (1...((⌊‘𝑥) + 1))) → ((ψ‘(𝑚 − 1)) − (𝑚 − 1)) ∈ ℂ)
6721, 26, 43, 48, 55, 59, 66fsumparts 14538 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((1 / 𝑛) · (((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) − ((ψ‘(𝑛 − 1)) − (𝑛 − 1)))) = ((((1 / ((⌊‘𝑥) + 1)) · ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))) − (1 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((1 / (𝑛 + 1)) − (1 / 𝑛)) · ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)))))
684flcld 12599 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℤ)
69 fzval3 12536 . . . . . . . . . . . . 13 ((⌊‘𝑥) ∈ ℤ → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
7068, 69syl 17 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → (1...(⌊‘𝑥)) = (1..^((⌊‘𝑥) + 1)))
7170eqcomd 2628 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → (1..^((⌊‘𝑥) + 1)) = (1...(⌊‘𝑥)))
72 elfznn 12370 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
7372adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
7473nncnd 11036 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
75 ax-1cn 9994 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
76 pncan 10287 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
7774, 75, 76sylancl 694 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) = 𝑛)
7873nnred 11035 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
7977, 78eqeltrd 2701 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) ∈ ℝ)
80 chpcl 24850 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) − 1) ∈ ℝ → (ψ‘((𝑛 + 1) − 1)) ∈ ℝ)
8179, 80syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) ∈ ℝ)
8281recnd 10068 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) ∈ ℂ)
8379recnd 10068 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) ∈ ℂ)
84 peano2rem 10348 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
8578, 84syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℝ)
86 chpcl 24850 . . . . . . . . . . . . . . . . 17 ((𝑛 − 1) ∈ ℝ → (ψ‘(𝑛 − 1)) ∈ ℝ)
8785, 86syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℝ)
8887recnd 10068 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑛 − 1)) ∈ ℂ)
89 1cnd 10056 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
9074, 89subcld 10392 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℂ)
9182, 83, 88, 90sub4d 10441 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) − ((ψ‘(𝑛 − 1)) − (𝑛 − 1))) = (((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) − (((𝑛 + 1) − 1) − (𝑛 − 1))))
92 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
9373, 92syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 − 1) ∈ ℕ0)
94 chpp1 24881 . . . . . . . . . . . . . . . . . . 19 ((𝑛 − 1) ∈ ℕ0 → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
9593, 94syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 − 1) + 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))))
96 npcan 10290 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
9774, 75, 96sylancl 694 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 − 1) + 1) = 𝑛)
9897, 77eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 − 1) + 1) = ((𝑛 + 1) − 1))
9998fveq2d 6195 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 − 1) + 1)) = (ψ‘((𝑛 + 1) − 1)))
10097fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘((𝑛 − 1) + 1)) = (Λ‘𝑛))
101100oveq2d 6666 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘(𝑛 − 1)) + (Λ‘((𝑛 − 1) + 1))) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
10295, 99, 1013eqtr3d 2664 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘((𝑛 + 1) − 1)) = ((ψ‘(𝑛 − 1)) + (Λ‘𝑛)))
103102oveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) = (((ψ‘(𝑛 − 1)) + (Λ‘𝑛)) − (ψ‘(𝑛 − 1))))
104 vmacl 24844 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
10573, 104syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
106105recnd 10068 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
10788, 106pncan2d 10394 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘(𝑛 − 1)) + (Λ‘𝑛)) − (ψ‘(𝑛 − 1))) = (Λ‘𝑛))
108103, 107eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) = (Λ‘𝑛))
109 peano2cn 10208 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℂ → (𝑛 + 1) ∈ ℂ)
11074, 109syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℂ)
111110, 74, 89nnncan2d 10427 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 1) − (𝑛 − 1)) = ((𝑛 + 1) − 𝑛))
112 pncan2 10288 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 𝑛) = 1)
11374, 75, 112sylancl 694 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 𝑛) = 1)
114111, 113eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − 1) − (𝑛 − 1)) = 1)
115108, 114oveq12d 6668 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘((𝑛 + 1) − 1)) − (ψ‘(𝑛 − 1))) − (((𝑛 + 1) − 1) − (𝑛 − 1))) = ((Λ‘𝑛) − 1))
11691, 115eqtrd 2656 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) − ((ψ‘(𝑛 − 1)) − (𝑛 − 1))) = ((Λ‘𝑛) − 1))
117116oveq2d 6666 . . . . . . . . . . . 12 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / 𝑛) · (((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) − ((ψ‘(𝑛 − 1)) − (𝑛 − 1)))) = ((1 / 𝑛) · ((Λ‘𝑛) − 1)))
118 peano2rem 10348 . . . . . . . . . . . . . . 15 ((Λ‘𝑛) ∈ ℝ → ((Λ‘𝑛) − 1) ∈ ℝ)
119105, 118syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) − 1) ∈ ℝ)
120119recnd 10068 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) − 1) ∈ ℂ)
12173nnne0d 11065 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
122120, 74, 121divrec2d 10805 . . . . . . . . . . . 12 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) − 1) / 𝑛) = ((1 / 𝑛) · ((Λ‘𝑛) − 1)))
123117, 122eqtr4d 2659 . . . . . . . . . . 11 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / 𝑛) · (((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) − ((ψ‘(𝑛 − 1)) − (𝑛 − 1)))) = (((Λ‘𝑛) − 1) / 𝑛))
12471, 123sumeq12rdv 14438 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))((1 / 𝑛) · (((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) − ((ψ‘(𝑛 − 1)) − (𝑛 − 1)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛))
12551nn0cnd 11353 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1[,)+∞) → (⌊‘𝑥) ∈ ℂ)
126 pncan 10287 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
127125, 75, 126sylancl 694 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1[,)+∞) → (((⌊‘𝑥) + 1) − 1) = (⌊‘𝑥))
128127fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1[,)+∞) → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘(⌊‘𝑥)))
129 chpfl 24876 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
1304, 129syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1[,)+∞) → (ψ‘(⌊‘𝑥)) = (ψ‘𝑥))
131128, 130eqtrd 2656 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1[,)+∞) → (ψ‘(((⌊‘𝑥) + 1) − 1)) = (ψ‘𝑥))
132131oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1[,)+∞) → ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1)) = ((ψ‘𝑥) − (((⌊‘𝑥) + 1) − 1)))
133 chpcl 24850 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
1344, 133syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1[,)+∞) → (ψ‘𝑥) ∈ ℝ)
135134recnd 10068 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1[,)+∞) → (ψ‘𝑥) ∈ ℂ)
13653nncnd 11036 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1[,)+∞) → ((⌊‘𝑥) + 1) ∈ ℂ)
137 1cnd 10056 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1[,)+∞) → 1 ∈ ℂ)
138135, 136, 137subsub3d 10422 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1[,)+∞) → ((ψ‘𝑥) − (((⌊‘𝑥) + 1) − 1)) = (((ψ‘𝑥) + 1) − ((⌊‘𝑥) + 1)))
139132, 138eqtrd 2656 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1[,)+∞) → ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1)) = (((ψ‘𝑥) + 1) − ((⌊‘𝑥) + 1)))
140139oveq2d 6666 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → ((1 / ((⌊‘𝑥) + 1)) · ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))) = ((1 / ((⌊‘𝑥) + 1)) · (((ψ‘𝑥) + 1) − ((⌊‘𝑥) + 1))))
14153nnrecred 11066 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1[,)+∞) → (1 / ((⌊‘𝑥) + 1)) ∈ ℝ)
142141recnd 10068 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1[,)+∞) → (1 / ((⌊‘𝑥) + 1)) ∈ ℂ)
143 peano2cn 10208 . . . . . . . . . . . . . . . 16 ((ψ‘𝑥) ∈ ℂ → ((ψ‘𝑥) + 1) ∈ ℂ)
144135, 143syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1[,)+∞) → ((ψ‘𝑥) + 1) ∈ ℂ)
145142, 144, 136subdid 10486 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → ((1 / ((⌊‘𝑥) + 1)) · (((ψ‘𝑥) + 1) − ((⌊‘𝑥) + 1))) = (((1 / ((⌊‘𝑥) + 1)) · ((ψ‘𝑥) + 1)) − ((1 / ((⌊‘𝑥) + 1)) · ((⌊‘𝑥) + 1))))
14653nnne0d 11065 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1[,)+∞) → ((⌊‘𝑥) + 1) ≠ 0)
147144, 136, 146divrec2d 10805 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1[,)+∞) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) = ((1 / ((⌊‘𝑥) + 1)) · ((ψ‘𝑥) + 1)))
148147eqcomd 2628 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1[,)+∞) → ((1 / ((⌊‘𝑥) + 1)) · ((ψ‘𝑥) + 1)) = (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)))
149136, 146recid2d 10797 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1[,)+∞) → ((1 / ((⌊‘𝑥) + 1)) · ((⌊‘𝑥) + 1)) = 1)
150148, 149oveq12d 6668 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → (((1 / ((⌊‘𝑥) + 1)) · ((ψ‘𝑥) + 1)) − ((1 / ((⌊‘𝑥) + 1)) · ((⌊‘𝑥) + 1))) = ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))
151140, 145, 1503eqtrd 2660 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → ((1 / ((⌊‘𝑥) + 1)) · ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))) = ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))
15275mul01i 10226 . . . . . . . . . . . . . 14 (1 · 0) = 0
153152a1i 11 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → (1 · 0) = 0)
154151, 153oveq12d 6668 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → (((1 / ((⌊‘𝑥) + 1)) · ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))) − (1 · 0)) = (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) − 0))
155 peano2re 10209 . . . . . . . . . . . . . . . . 17 ((ψ‘𝑥) ∈ ℝ → ((ψ‘𝑥) + 1) ∈ ℝ)
156134, 155syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1[,)+∞) → ((ψ‘𝑥) + 1) ∈ ℝ)
157156, 53nndivred 11069 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1[,)+∞) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ∈ ℝ)
158157recnd 10068 . . . . . . . . . . . . . 14 (𝑥 ∈ (1[,)+∞) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ∈ ℂ)
159 subcl 10280 . . . . . . . . . . . . . 14 (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) ∈ ℂ)
160158, 75, 159sylancl 694 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) ∈ ℂ)
161160subid1d 10381 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) − 0) = ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))
162154, 161eqtrd 2656 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → (((1 / ((⌊‘𝑥) + 1)) · ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))) − (1 · 0)) = ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))
163 peano2nn 11032 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
164 nnmulcl 11043 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
165163, 164mpdan 702 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 · (𝑛 + 1)) ∈ ℕ)
16673, 165syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
167166nnrecred 11066 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑛 · (𝑛 + 1))) ∈ ℝ)
168167recnd 10068 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑛 · (𝑛 + 1))) ∈ ℂ)
169 nnrp 11842 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
170 pntrval.r . . . . . . . . . . . . . . . . . . . 20 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
171170pntrf 25252 . . . . . . . . . . . . . . . . . . 19 𝑅:ℝ+⟶ℝ
172171ffvelrni 6358 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
173169, 172syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑅𝑛) ∈ ℝ)
17473, 173syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅𝑛) ∈ ℝ)
175174recnd 10068 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅𝑛) ∈ ℂ)
176168, 175mulneg1d 10483 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (-(1 / (𝑛 · (𝑛 + 1))) · (𝑅𝑛)) = -((1 / (𝑛 · (𝑛 + 1))) · (𝑅𝑛)))
17774, 89mulcld 10060 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · 1) ∈ ℂ)
17874, 110mulcld 10060 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (𝑛 + 1)) ∈ ℂ)
179166nnne0d 11065 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (𝑛 + 1)) ≠ 0)
180110, 177, 178, 179divsubdird 10840 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − (𝑛 · 1)) / (𝑛 · (𝑛 + 1))) = (((𝑛 + 1) / (𝑛 · (𝑛 + 1))) − ((𝑛 · 1) / (𝑛 · (𝑛 + 1)))))
18174mulid1d 10057 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · 1) = 𝑛)
182181oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − (𝑛 · 1)) = ((𝑛 + 1) − 𝑛))
183182, 113eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − (𝑛 · 1)) = 1)
184183oveq1d 6665 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) − (𝑛 · 1)) / (𝑛 · (𝑛 + 1))) = (1 / (𝑛 · (𝑛 + 1))))
185110mulid1d 10057 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) · 1) = (𝑛 + 1))
186110, 74mulcomd 10061 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) · 𝑛) = (𝑛 · (𝑛 + 1)))
187185, 186oveq12d 6668 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) · 1) / ((𝑛 + 1) · 𝑛)) = ((𝑛 + 1) / (𝑛 · (𝑛 + 1))))
18873, 163syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℕ)
189188nnne0d 11065 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ≠ 0)
19089, 74, 110, 121, 189divcan5d 10827 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) · 1) / ((𝑛 + 1) · 𝑛)) = (1 / 𝑛))
191187, 190eqtr3d 2658 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) / (𝑛 · (𝑛 + 1))) = (1 / 𝑛))
19289, 110, 74, 189, 121divcan5d 10827 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 · 1) / (𝑛 · (𝑛 + 1))) = (1 / (𝑛 + 1)))
193191, 192oveq12d 6668 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑛 + 1) / (𝑛 · (𝑛 + 1))) − ((𝑛 · 1) / (𝑛 · (𝑛 + 1)))) = ((1 / 𝑛) − (1 / (𝑛 + 1))))
194180, 184, 1933eqtr3d 2664 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑛 · (𝑛 + 1))) = ((1 / 𝑛) − (1 / (𝑛 + 1))))
195194negeqd 10275 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -(1 / (𝑛 · (𝑛 + 1))) = -((1 / 𝑛) − (1 / (𝑛 + 1))))
19673nnrecred 11066 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
197196recnd 10068 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
198188nnrecred 11066 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑛 + 1)) ∈ ℝ)
199198recnd 10068 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / (𝑛 + 1)) ∈ ℂ)
200197, 199negsubdi2d 10408 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -((1 / 𝑛) − (1 / (𝑛 + 1))) = ((1 / (𝑛 + 1)) − (1 / 𝑛)))
201195, 200eqtr2d 2657 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 / (𝑛 + 1)) − (1 / 𝑛)) = -(1 / (𝑛 · (𝑛 + 1))))
20273nnrpd 11870 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
20377, 202eqeltrd 2701 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑛 + 1) − 1) ∈ ℝ+)
204170pntrval 25251 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) − 1) ∈ ℝ+ → (𝑅‘((𝑛 + 1) − 1)) = ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)))
205203, 204syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘((𝑛 + 1) − 1)) = ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)))
20677fveq2d 6195 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘((𝑛 + 1) − 1)) = (𝑅𝑛))
207205, 206eqtr3d 2658 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)) = (𝑅𝑛))
208201, 207oveq12d 6668 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((1 / (𝑛 + 1)) − (1 / 𝑛)) · ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1))) = (-(1 / (𝑛 · (𝑛 + 1))) · (𝑅𝑛)))
209175, 178, 179divrec2d 10805 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = ((1 / (𝑛 · (𝑛 + 1))) · (𝑅𝑛)))
210209negeqd 10275 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → -((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = -((1 / (𝑛 · (𝑛 + 1))) · (𝑅𝑛)))
211176, 208, 2103eqtr4d 2666 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((1 / (𝑛 + 1)) − (1 / 𝑛)) · ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1))) = -((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
21271, 211sumeq12rdv 14438 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((1 / (𝑛 + 1)) − (1 / 𝑛)) · ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1))) = Σ𝑛 ∈ (1...(⌊‘𝑥))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
213 fzfid 12772 . . . . . . . . . . . . 13 (𝑥 ∈ (1[,)+∞) → (1...(⌊‘𝑥)) ∈ Fin)
214173, 165nndivred 11069 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
21573, 214syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
216215recnd 10068 . . . . . . . . . . . . 13 ((𝑥 ∈ (1[,)+∞) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
217213, 216fsumneg 14519 . . . . . . . . . . . 12 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1...(⌊‘𝑥))-((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
218212, 217eqtrd 2656 . . . . . . . . . . 11 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((1 / (𝑛 + 1)) − (1 / 𝑛)) · ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1))) = -Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
219162, 218oveq12d 6668 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → ((((1 / ((⌊‘𝑥) + 1)) · ((ψ‘(((⌊‘𝑥) + 1) − 1)) − (((⌊‘𝑥) + 1) − 1))) − (1 · 0)) − Σ𝑛 ∈ (1..^((⌊‘𝑥) + 1))(((1 / (𝑛 + 1)) − (1 / 𝑛)) · ((ψ‘((𝑛 + 1) − 1)) − ((𝑛 + 1) − 1)))) = (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) − -Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
22067, 124, 2193eqtr3d 2664 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) = (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) − -Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
221 fzfid 12772 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (1...(⌊‘𝑥)) ∈ Fin)
22272adantl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
223222, 214syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
224221, 223fsumrecl 14465 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
225224recnd 10068 . . . . . . . . . . 11 (𝑥 ∈ ℝ → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2264, 225syl 17 . . . . . . . . . 10 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
227160, 226subnegd 10399 . . . . . . . . 9 (𝑥 ∈ (1[,)+∞) → (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) − -Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) + Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
228220, 227eqtrd 2656 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) = (((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) + Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
229228oveq1d 6665 . . . . . . 7 (𝑥 ∈ (1[,)+∞) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1)) = ((((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) + Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1)))
230160, 226pncan2d 10394 . . . . . . 7 (𝑥 ∈ (1[,)+∞) → ((((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) + Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
231229, 230eqtrd 2656 . . . . . 6 (𝑥 ∈ (1[,)+∞) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
232231mpteq2ia 4740 . . . . 5 (𝑥 ∈ (1[,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))) = (𝑥 ∈ (1[,)+∞) ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
233 fzfid 12772 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
23472adantl 482 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
235234, 104syl 17 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
236235, 118syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) − 1) ∈ ℝ)
237236, 234nndivred 11069 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) − 1) / 𝑛) ∈ ℝ)
238233, 237fsumrecl 14465 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) ∈ ℝ)
239 rpre 11839 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
240239adantl 482 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
241240, 133syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (ψ‘𝑥) ∈ ℝ)
242241, 155syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) + 1) ∈ ℝ)
243 rprege0 11847 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
244243, 50syl 17 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (⌊‘𝑥) ∈ ℕ0)
245244adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℕ0)
246245, 52syl 17 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℕ)
247242, 246nndivred 11069 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ∈ ℝ)
248 peano2rem 10348 . . . . . . . 8 ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ∈ ℝ → ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) ∈ ℝ)
249247, 248syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1) ∈ ℝ)
250 reex 10027 . . . . . . . . . . . 12 ℝ ∈ V
251250, 14ssexi 4803 . . . . . . . . . . 11 + ∈ V
252251a1i 11 . . . . . . . . . 10 (⊤ → ℝ+ ∈ V)
253235, 234nndivred 11069 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
254253recnd 10068 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
255233, 254fsumcl 14464 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
256 relogcl 24322 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
257256adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
258257recnd 10068 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
259255, 258subcld 10392 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
260234nnrecred 11066 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℝ)
261233, 260fsumrecl 14465 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℝ)
262261, 257resubcld 10458 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)) ∈ ℝ)
263 eqidd 2623 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))))
264 eqidd 2623 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))))
265252, 259, 262, 263, 264offval2 6914 . . . . . . . . 9 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))))
266260recnd 10068 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 / 𝑛) ∈ ℂ)
267233, 254, 266fsumsub 14520 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − (1 / 𝑛)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)))
268235recnd 10068 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
269 1cnd 10056 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℂ)
270234nncnd 11036 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
271234nnne0d 11065 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
272268, 269, 270, 271divsubdird 10840 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) − 1) / 𝑛) = (((Λ‘𝑛) / 𝑛) − (1 / 𝑛)))
273272sumeq2dv 14433 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) − (1 / 𝑛)))
274261recnd 10068 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ∈ ℂ)
275255, 274, 258nnncan2d 10427 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛)))
276267, 273, 2753eqtr4rd 2667 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛))
277276mpteq2dva 4744 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛)))
278265, 277eqtrd 2656 . . . . . . . 8 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛)))
279 vmadivsum 25171 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
28014a1i 11 . . . . . . . . . 10 (⊤ → ℝ+ ⊆ ℝ)
281262recnd 10068 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)) ∈ ℂ)
282 1red 10055 . . . . . . . . . 10 (⊤ → 1 ∈ ℝ)
283 harmoniclbnd 24735 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (log‘𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛))
284283adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛))
285257, 261, 284abssubge0d 14170 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))
286285adantrr 753 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))
287239ad2antrl 764 . . . . . . . . . . . . 13 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
288 simprr 796 . . . . . . . . . . . . 13 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
289 harmonicubnd 24736 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
290287, 288, 289syl2anc 693 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1))
291 1red 10055 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
292261, 257, 291lesubadd2d 10626 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)) ≤ 1 ↔ Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1)))
293292adantrr 753 . . . . . . . . . . . 12 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)) ≤ 1 ↔ Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) ≤ ((log‘𝑥) + 1)))
294290, 293mpbird 247 . . . . . . . . . . 11 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)) ≤ 1)
295286, 294eqbrtrd 4675 . . . . . . . . . 10 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) ≤ 1)
296280, 281, 282, 282, 295elo1d 14267 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
297 o1sub 14346 . . . . . . . . 9 (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))) ∈ 𝑂(1))
298279, 296, 297sylancr 695 . . . . . . . 8 (⊤ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∘𝑓 − (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / 𝑛) − (log‘𝑥)))) ∈ 𝑂(1))
299278, 298eqeltrrd 2702 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛)) ∈ 𝑂(1))
300247recnd 10068 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ∈ ℂ)
301 1cnd 10056 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
302241recnd 10068 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (ψ‘𝑥) ∈ ℂ)
303 rpcnne0 11850 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
304303adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
305 divdir 10710 . . . . . . . . . . . 12 (((ψ‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((ψ‘𝑥) + 1) / 𝑥) = (((ψ‘𝑥) / 𝑥) + (1 / 𝑥)))
306302, 301, 304, 305syl3anc 1326 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / 𝑥) = (((ψ‘𝑥) / 𝑥) + (1 / 𝑥)))
307306mpteq2dva 4744 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) + 1) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) + (1 / 𝑥))))
308 simpr 477 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
309241, 308rerpdivcld 11903 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
310 rpreccl 11857 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
311310adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
312 eqidd 2623 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)))
313 eqidd 2623 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
314252, 309, 311, 312, 313offval2 6914 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) + (1 / 𝑥))))
315 chpo1ub 25169 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
316 divrcnv 14584 . . . . . . . . . . . . . 14 (1 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0)
31775, 316ax-mp 5 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0
318 rlimo1 14347 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ⇝𝑟 0 → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
319317, 318mp1i 13 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1))
320 o1add 14344 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
321315, 319, 320sylancr 695 . . . . . . . . . . 11 (⊤ → ((𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) ∈ 𝑂(1))
322314, 321eqeltrrd 2702 . . . . . . . . . 10 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) + (1 / 𝑥))) ∈ 𝑂(1))
323307, 322eqeltrd 2701 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) + 1) / 𝑥)) ∈ 𝑂(1))
324242, 308rerpdivcld 11903 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / 𝑥) ∈ ℝ)
325 chpge0 24852 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
326240, 325syl 17 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ≤ (ψ‘𝑥))
327241, 326ge0p1rpd 11902 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) + 1) ∈ ℝ+)
328327rprege0d 11879 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) ∈ ℝ ∧ 0 ≤ ((ψ‘𝑥) + 1)))
329246nnrpd 11870 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) + 1) ∈ ℝ+)
330329rpregt0d 11878 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((⌊‘𝑥) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝑥) + 1)))
331 divge0 10892 . . . . . . . . . . . . 13 (((((ψ‘𝑥) + 1) ∈ ℝ ∧ 0 ≤ ((ψ‘𝑥) + 1)) ∧ (((⌊‘𝑥) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝑥) + 1))) → 0 ≤ (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)))
332328, 330, 331syl2anc 693 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ≤ (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)))
333247, 332absidd 14161 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘(((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1))) = (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)))
334324recnd 10068 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / 𝑥) ∈ ℂ)
335334abscld 14175 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘(((ψ‘𝑥) + 1) / 𝑥)) ∈ ℝ)
336 fllep1 12602 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
337240, 336syl 17 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≤ ((⌊‘𝑥) + 1))
338 rpregt0 11846 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
339338adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
340327rpregt0d 11878 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) ∈ ℝ ∧ 0 < ((ψ‘𝑥) + 1)))
341 lediv2 10913 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (((⌊‘𝑥) + 1) ∈ ℝ ∧ 0 < ((⌊‘𝑥) + 1)) ∧ (((ψ‘𝑥) + 1) ∈ ℝ ∧ 0 < ((ψ‘𝑥) + 1))) → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ≤ (((ψ‘𝑥) + 1) / 𝑥)))
342339, 330, 340, 341syl3anc 1326 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ≤ ((⌊‘𝑥) + 1) ↔ (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ≤ (((ψ‘𝑥) + 1) / 𝑥)))
343337, 342mpbid 222 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ≤ (((ψ‘𝑥) + 1) / 𝑥))
344324leabsd 14153 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / 𝑥) ≤ (abs‘(((ψ‘𝑥) + 1) / 𝑥)))
345247, 324, 335, 343, 344letrd 10194 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) ≤ (abs‘(((ψ‘𝑥) + 1) / 𝑥)))
346333, 345eqbrtrd 4675 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘(((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1))) ≤ (abs‘(((ψ‘𝑥) + 1) / 𝑥)))
347346adantrr 753 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1))) ≤ (abs‘(((ψ‘𝑥) + 1) / 𝑥)))
348282, 323, 324, 300, 347o1le 14383 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1))) ∈ 𝑂(1))
349 o1const 14350 . . . . . . . . . 10 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
35014, 75, 349mp2an 708 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
351350a1i 11 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
352300, 301, 348, 351o1sub2 14356 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1)) ∈ 𝑂(1))
353238, 249, 299, 352o1sub2 14356 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))) ∈ 𝑂(1))
35413, 353o1res2 14294 . . . . 5 (⊤ → (𝑥 ∈ (1[,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) − 1) / 𝑛) − ((((ψ‘𝑥) + 1) / ((⌊‘𝑥) + 1)) − 1))) ∈ 𝑂(1))
355232, 354syl5eqelr 2706 . . . 4 (⊤ → (𝑥 ∈ (1[,)+∞) ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1))
35616, 355eqeltrd 2701 . . 3 (⊤ → ((𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ↾ (1[,)+∞)) ∈ 𝑂(1))
357 eqid 2622 . . . . . 6 (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
358357, 225fmpti 6383 . . . . 5 (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))):ℝ⟶ℂ
359358a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))):ℝ⟶ℂ)
360 ssid 3624 . . . . 5 ℝ ⊆ ℝ
361360a1i 11 . . . 4 (⊤ → ℝ ⊆ ℝ)
362359, 361, 282o1resb 14297 . . 3 (⊤ → ((𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1) ↔ ((𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ↾ (1[,)+∞)) ∈ 𝑂(1)))
363356, 362mpbird 247 . 2 (⊤ → (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1))
364363trud 1493 1 (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  [,)cico 12177  ...cfz 12326  ..^cfzo 12465  cfl 12591  abscabs 13974  𝑟 crli 14216  𝑂(1)co1 14217  Σcsu 14416  logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826
This theorem is referenced by:  pntrsumbnd  25255
  Copyright terms: Public domain W3C validator