MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bnd Structured version   Visualization version   GIF version

Theorem pntrlog2bnd 25273
Description: A bound on 𝑅(𝑥)log↑2(𝑥). Equation 10.6.15 of [Shapiro], p. 431. (Contributed by Mario Carneiro, 1-Jun-2016.)
Hypothesis
Ref Expression
pntpbnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrlog2bnd ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Distinct variable groups:   𝑥,𝑛,𝑐,𝑅   𝑎,𝑐,𝑛,𝑥,𝐴
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrlog2bnd
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12235 . . 3 (1(,)+∞) ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (1(,)+∞) ⊆ ℝ)
3 1red 10055 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
42sselda 3603 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 11836 . . . . . . . . . 10 1 ∈ ℝ+
65a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
7 1red 10055 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
8 eliooord 12233 . . . . . . . . . . . 12 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
98adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
109simpld 475 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
117, 4, 10ltled 10185 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
124, 6, 11rpgecld 11911 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
13 pntpbnd.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1413pntrf 25252 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1514ffvelrni 6358 . . . . . . . 8 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1612, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1716recnd 10068 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℂ)
1817abscld 14175 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (abs‘(𝑅𝑥)) ∈ ℝ)
1912relogcld 24369 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
2018, 19remulcld 10070 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
21 2re 11090 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
234, 10rplogcld 24375 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2422, 23rerpdivcld 11903 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
25 fzfid 12772 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
2612adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑥 ∈ ℝ+)
27 elfznn 12370 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴))) → 𝑛 ∈ ℕ)
2827adantl 482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
2928nnrpd 11870 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
3026, 29rpdivcld 11889 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑥 / 𝑛) ∈ ℝ+)
3114ffvelrni 6358 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3230, 31syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3332recnd 10068 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3433abscld 14175 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
3529relogcld 24369 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
3634, 35remulcld 10070 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3725, 36fsumrecl 14465 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
3824, 37remulcld 10070 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
3920, 38resubcld 10458 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
4039, 12rerpdivcld 11903 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
4113pntrmax 25253 . . 3 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐
42 eqid 2622 . . . . 5 (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
43 eqid 2622 . . . . 5 (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
44 simprl 794 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝑐 ∈ ℝ+)
45 simprr 796 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)
46 simpll 790 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 𝐴 ∈ ℝ)
47 simplr 792 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → 1 ≤ 𝐴)
4842, 13, 43, 44, 45, 46, 47pntrlog2bndlem6 25272 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐)) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
4948rexlimdvaa 3032 . . 3 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1)))
5041, 49mpi 20 . 2 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (𝑥 ∈ (1(,)+∞) ↦ ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ ≤𝑂(1))
51 simprl 794 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
52 chpcl 24850 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
5351, 52syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
5453, 51readdcld 10069 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
555a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
56 simprr 796 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5751, 55, 56rpgecld 11911 . . . 4 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5857relogcld 24369 . . 3 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5954, 58remulcld 10070 . 2 (((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6040adantr 481 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
6153ad2ant2r 783 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
62 simprll 802 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
6361, 62readdcld 10069 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℝ)
6457ad2ant2r 783 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
6564relogcld 24369 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
6663, 65remulcld 10070 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℝ)
6712adantr 481 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
6866, 67rerpdivcld 11903 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ∈ ℝ)
6916adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℝ)
7069recnd 10068 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) ∈ ℂ)
7170abscld 14175 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ∈ ℝ)
7267relogcld 24369 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
7371, 72remulcld 10070 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ∈ ℝ)
7424adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 / (log‘𝑥)) ∈ ℝ)
7537adantr 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
7674, 75remulcld 10070 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
7773, 76resubcld 10458 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
7821a1i 11 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
794adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
8010adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 < 𝑥)
8179, 80rplogcld 24375 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ+)
82 2rp 11837 . . . . . . . . . 10 2 ∈ ℝ+
8382a1i 11 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
8483rpge0d 11876 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
8578, 81, 84divge0d 11912 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 / (log‘𝑥)))
86 fzfid 12772 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘(𝑥 / 𝐴))) ∈ Fin)
8736adantlr 751 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
8833adantlr 751 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
8988abscld 14175 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
9029adantlr 751 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ+)
9190relogcld 24369 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → (log‘𝑛) ∈ ℝ)
9288absge0d 14183 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (abs‘(𝑅‘(𝑥 / 𝑛))))
9390rpred 11872 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℝ)
9427adantl 482 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 𝑛 ∈ ℕ)
9594nnge1d 11063 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 1 ≤ 𝑛)
9693, 95logge0d 24376 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ (log‘𝑛))
9789, 91, 92, 96mulge0d 10604 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))) → 0 ≤ ((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9886, 87, 97fsumge0 14527 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9974, 75, 85, 98mulge0d 10604 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10073, 76subge02d 10619 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 ≤ ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ↔ (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥))))
10199, 100mpbid 222 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ ((abs‘(𝑅𝑥)) · (log‘𝑥)))
10270absge0d 14183 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (abs‘(𝑅𝑥)))
10381rpge0d 11876 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
104 chpcl 24850 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
10579, 104syl 17 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℝ)
106105, 79readdcld 10069 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ∈ ℝ)
10713pntrval 25251 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
10867, 107syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
109108fveq2d 6195 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) = (abs‘((ψ‘𝑥) − 𝑥)))
110105recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℂ)
11179recnd 10068 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
112110, 111abs2dif2d 14197 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((abs‘(ψ‘𝑥)) + (abs‘𝑥)))
113 chpge0 24852 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
11479, 113syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑥))
115105, 114absidd 14161 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(ψ‘𝑥)) = (ψ‘𝑥))
11667rpge0d 11876 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑥)
11779, 116absidd 14161 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘𝑥) = 𝑥)
118115, 117oveq12d 6668 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(ψ‘𝑥)) + (abs‘𝑥)) = ((ψ‘𝑥) + 𝑥))
119112, 118breqtrd 4679 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((ψ‘𝑥) − 𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
120109, 119eqbrtrd 4675 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑥) + 𝑥))
121 simprr 796 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
12279, 62, 121ltled 10185 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
123 chpwordi 24883 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
12479, 62, 122, 123syl3anc 1326 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ≤ (ψ‘𝑦))
125105, 79, 61, 62, 124, 122le2addd 10646 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) + 𝑥) ≤ ((ψ‘𝑦) + 𝑦))
12671, 106, 63, 120, 125letrd 10194 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(𝑅𝑥)) ≤ ((ψ‘𝑦) + 𝑦))
12767, 64logled 24373 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
128122, 127mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
12971, 63, 72, 65, 102, 103, 126, 128lemul12ad 10966 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(𝑅𝑥)) · (log‘𝑥)) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13077, 73, 66, 101, 129letrd 10194 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
13177, 66, 67, 130lediv1dd 11930 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥))
1325a1i 11 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
133 chpge0 24852 . . . . . . . 8 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
13462, 133syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
13564rpge0d 11876 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 𝑦)
13661, 62, 134, 135addge0d 10603 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) + 𝑦))
137 simprlr 803 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑦)
13862, 137logge0d 24376 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑦))
13963, 65, 136, 138mulge0d 10604 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14011adantr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
141132, 67, 66, 139, 140lediv2ad 11894 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1))
14261recnd 10068 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℂ)
14362recnd 10068 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℂ)
144142, 143addcld 10059 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) + 𝑦) ∈ ℂ)
14565recnd 10068 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℂ)
146144, 145mulcld 10060 . . . . 5 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) + 𝑦) · (log‘𝑦)) ∈ ℂ)
147146div1d 10793 . . . 4 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 1) = (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
148141, 147breqtrd 4679 . . 3 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) + 𝑦) · (log‘𝑦)) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
14960, 68, 66, 131, 148letrd 10194 . 2 ((((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ (1(,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ (((ψ‘𝑦) + 𝑦) · (log‘𝑦)))
1502, 3, 40, 50, 59, 149lo1bddrp 14256 1 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → ∃𝑐 ∈ ℝ+𝑥 ∈ (1(,)+∞)((((abs‘(𝑅𝑥)) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘(𝑥 / 𝐴)))((abs‘(𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ≤ 𝑐)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  +crp 11832  (,)cioo 12175  ...cfz 12326  cfl 12591  abscabs 13974  ≤𝑂(1)clo1 14218  Σcsu 14416  logclog 24301  Λcvma 24818  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827
This theorem is referenced by:  pntlemp  25299
  Copyright terms: Public domain W3C validator