MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2ne Structured version   Visualization version   GIF version

Theorem pr2ne 8828
Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2𝑜𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 4269 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2630 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 8022 . . . . . . . 8 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1𝑜)
4 entr 8008 . . . . . . . . . . . 12 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1𝑜) → {𝐴, 𝐵} ≈ 1𝑜)
5 1sdom2 8159 . . . . . . . . . . . . . . 15 1𝑜 ≺ 2𝑜
6 sdomnen 7984 . . . . . . . . . . . . . . 15 (1𝑜 ≺ 2𝑜 → ¬ 1𝑜 ≈ 2𝑜)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 ¬ 1𝑜 ≈ 2𝑜
8 ensym 8005 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ≈ 1𝑜 → 1𝑜 ≈ {𝐴, 𝐵})
9 entr 8008 . . . . . . . . . . . . . . . 16 ((1𝑜 ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
109ex 450 . . . . . . . . . . . . . . 15 (1𝑜 ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
118, 10syl 17 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ≈ 1𝑜 → ({𝐴, 𝐵} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
127, 11mtoi 190 . . . . . . . . . . . . 13 ({𝐴, 𝐵} ≈ 1𝑜 → ¬ {𝐴, 𝐵} ≈ 2𝑜)
1312a1d 25 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1𝑜 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))
144, 13syl 17 . . . . . . . . . . 11 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1𝑜) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))
1514ex 450 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1𝑜 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜)))
16 prex 4909 . . . . . . . . . . 11 {𝐴, 𝐵} ∈ V
17 eqeng 7989 . . . . . . . . . . 11 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
1816, 17ax-mp 5 . . . . . . . . . 10 ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})
1915, 18syl11 33 . . . . . . . . 9 ({𝐴, 𝐴} ≈ 1𝑜 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜)))
2019a1dd 50 . . . . . . . 8 ({𝐴, 𝐴} ≈ 1𝑜 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))))
213, 20syl 17 . . . . . . 7 (𝐴𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))))
2221com23 86 . . . . . 6 (𝐴𝐶 → (𝐵𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))))
2322imp 445 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜)))
2423pm2.43a 54 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2𝑜))
252, 24syl5 34 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2𝑜))
2625necon2ad 2809 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2𝑜𝐴𝐵))
27 pr2nelem 8827 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
28273expia 1267 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2𝑜))
2926, 28impbid 202 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2𝑜𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  {cpr 4179   class class class wbr 4653  1𝑜c1o 7553  2𝑜c2o 7554  cen 7952  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  prdom2  8829  isprm2lem  15394  pmtrrn2  17880  mdetunilem7  20424
  Copyright terms: Public domain W3C validator