MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limg Structured version   Visualization version   GIF version

Theorem r1limg 8634
Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1limg ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1limg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-r1 8627 . . . . 5 𝑅1 = rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)
21dmeqi 5325 . . . 4 dom 𝑅1 = dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)
32eleq2i 2693 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅))
4 rdglimg 7521 . . 3 ((𝐴 ∈ dom rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴))
53, 4sylanb 489 . 2 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴))
61fveq1i 6192 . 2 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅)‘𝐴)
7 r1funlim 8629 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
87simpli 474 . . . 4 Fun 𝑅1
9 funiunfv 6506 . . . 4 (Fun 𝑅1 𝑥𝐴 (𝑅1𝑥) = (𝑅1𝐴))
108, 9ax-mp 5 . . 3 𝑥𝐴 (𝑅1𝑥) = (𝑅1𝐴)
111imaeq1i 5463 . . . 4 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
1211unieqi 4445 . . 3 (𝑅1𝐴) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
1310, 12eqtri 2644 . 2 𝑥𝐴 (𝑅1𝑥) = (rec((𝑦 ∈ V ↦ 𝒫 𝑦), ∅) “ 𝐴)
145, 6, 133eqtr4g 2681 1 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  𝒫 cpw 4158   cuni 4436   ciun 4520  cmpt 4729  dom cdm 5114  cima 5117  Lim wlim 5724  Fun wfun 5882  cfv 5888  reccrdg 7505  𝑅1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  r1lim  8635  r1tr  8639  r1ordg  8641  r1pwss  8647  r1val1  8649
  Copyright terms: Public domain W3C validator