MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1val1 Structured version   Visualization version   GIF version

Theorem r1val1 8649
Description: The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1val1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem r1val1
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → 𝐴 = ∅)
21fveq2d 6195 . . . . 5 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = (𝑅1‘∅))
3 r10 8631 . . . . 5 (𝑅1‘∅) = ∅
42, 3syl6eq 2672 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) = ∅)
5 0ss 3972 . . . . 5 ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
65a1i 11 . . . 4 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → ∅ ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
74, 6eqsstrd 3639 . . 3 ((𝐴 ∈ dom 𝑅1𝐴 = ∅) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
8 nfv 1843 . . . . 5 𝑥 𝐴 ∈ dom 𝑅1
9 nfcv 2764 . . . . . 6 𝑥(𝑅1𝐴)
10 nfiu1 4550 . . . . . 6 𝑥 𝑥𝐴 𝒫 (𝑅1𝑥)
119, 10nfss 3596 . . . . 5 𝑥(𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)
12 simpr 477 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝐴 = suc 𝑥)
1312fveq2d 6195 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = (𝑅1‘suc 𝑥))
14 eleq1 2689 . . . . . . . . . . . 12 (𝐴 = suc 𝑥 → (𝐴 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1514biimpac 503 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
16 r1funlim 8629 . . . . . . . . . . . . 13 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1716simpri 478 . . . . . . . . . . . 12 Lim dom 𝑅1
18 limsuc 7049 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
1917, 18ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2015, 19sylibr 224 . . . . . . . . . 10 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
21 r1sucg 8632 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2220, 21syl 17 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2313, 22eqtrd 2656 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) = 𝒫 (𝑅1𝑥))
24 vex 3203 . . . . . . . . . . 11 𝑥 ∈ V
2524sucid 5804 . . . . . . . . . 10 𝑥 ∈ suc 𝑥
2625, 12syl5eleqr 2708 . . . . . . . . 9 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝑥𝐴)
27 ssiun2 4563 . . . . . . . . 9 (𝑥𝐴 → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → 𝒫 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
2923, 28eqsstrd 3639 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
3029ex 450 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3130a1d 25 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑥 ∈ On → (𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))))
328, 11, 31rexlimd 3026 . . . 4 (𝐴 ∈ dom 𝑅1 → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥)))
3332imp 445 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ ∃𝑥 ∈ On 𝐴 = suc 𝑥) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
34 r1limg 8634 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
35 r1tr 8639 . . . . . . . . 9 Tr (𝑅1𝑥)
36 dftr4 4757 . . . . . . . . 9 (Tr (𝑅1𝑥) ↔ (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3735, 36mpbi 220 . . . . . . . 8 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥)
3837a1i 11 . . . . . . 7 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
3938ralrimivw 2967 . . . . . 6 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥))
40 ss2iun 4536 . . . . . 6 (∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝒫 (𝑅1𝑥) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4139, 40syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4234, 41eqsstrd 3639 . . . 4 ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
4342adantrl 752 . . 3 ((𝐴 ∈ dom 𝑅1 ∧ (𝐴 ∈ V ∧ Lim 𝐴)) → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
44 limord 5784 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
4517, 44ax-mp 5 . . . . . 6 Ord dom 𝑅1
46 ordsson 6989 . . . . . 6 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
4745, 46ax-mp 5 . . . . 5 dom 𝑅1 ⊆ On
4847sseli 3599 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
49 onzsl 7046 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
5048, 49sylib 208 . . 3 (𝐴 ∈ dom 𝑅1 → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
517, 33, 43, 50mpjao3dan 1395 . 2 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ⊆ 𝑥𝐴 𝒫 (𝑅1𝑥))
52 ordtr1 5767 . . . . . . . 8 (Ord dom 𝑅1 → ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
5345, 52ax-mp 5 . . . . . . 7 ((𝑥𝐴𝐴 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5453ancoms 469 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥 ∈ dom 𝑅1)
5554, 21syl 17 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
56 simpr 477 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝑥𝐴)
57 ordelord 5745 . . . . . . . . . 10 ((Ord dom 𝑅1𝐴 ∈ dom 𝑅1) → Ord 𝐴)
5845, 57mpan 706 . . . . . . . . 9 (𝐴 ∈ dom 𝑅1 → Ord 𝐴)
5958adantr 481 . . . . . . . 8 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → Ord 𝐴)
60 ordelsuc 7020 . . . . . . . 8 ((𝑥𝐴 ∧ Ord 𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6156, 59, 60syl2anc 693 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑥𝐴 ↔ suc 𝑥𝐴))
6256, 61mpbid 222 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥𝐴)
6354, 19sylib 208 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → suc 𝑥 ∈ dom 𝑅1)
64 simpl 473 . . . . . . 7 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝐴 ∈ dom 𝑅1)
65 r1ord3g 8642 . . . . . . 7 ((suc 𝑥 ∈ dom 𝑅1𝐴 ∈ dom 𝑅1) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6663, 64, 65syl2anc 693 . . . . . 6 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (suc 𝑥𝐴 → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴)))
6762, 66mpd 15 . . . . 5 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → (𝑅1‘suc 𝑥) ⊆ (𝑅1𝐴))
6855, 67eqsstr3d 3640 . . . 4 ((𝐴 ∈ dom 𝑅1𝑥𝐴) → 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
6968ralrimiva 2966 . . 3 (𝐴 ∈ dom 𝑅1 → ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
70 iunss 4561 . . 3 ( 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴) ↔ ∀𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7169, 70sylibr 224 . 2 (𝐴 ∈ dom 𝑅1 𝑥𝐴 𝒫 (𝑅1𝑥) ⊆ (𝑅1𝐴))
7251, 71eqssd 3620 1 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) = 𝑥𝐴 𝒫 (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1036   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   ciun 4520  Tr wtr 4752  dom cdm 5114  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  Fun wfun 5882  cfv 5888  𝑅1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  rankr1ai  8661  r1val3  8701
  Copyright terms: Public domain W3C validator