MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramval Structured version   Visualization version   GIF version

Theorem ramval 15712
Description: The value of the Ramsey number function. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
ramval.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
Assertion
Ref Expression
ramval ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
Distinct variable groups:   𝑓,𝑐,𝑥,𝐶   𝑛,𝑐,𝑠,𝐹,𝑓,𝑥   𝑎,𝑏,𝑐,𝑓,𝑖,𝑛,𝑠,𝑥,𝑀   𝑅,𝑐,𝑓,𝑛,𝑠,𝑥   𝑉,𝑐,𝑓,𝑛,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑖,𝑛,𝑠,𝑎,𝑏)   𝑅(𝑖,𝑎,𝑏)   𝑇(𝑥,𝑓,𝑖,𝑛,𝑠,𝑎,𝑏,𝑐)   𝐹(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem ramval
Dummy variables 𝑦 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ram 15705 . . 3 Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ))
21a1i 11 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < )))
3 simplrr 801 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑟 = 𝐹)
43dmeqd 5326 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = dom 𝐹)
5 simpll3 1102 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝐹:𝑅⟶ℕ0)
6 fdm 6051 . . . . . . . . . . . 12 (𝐹:𝑅⟶ℕ0 → dom 𝐹 = 𝑅)
75, 6syl 17 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝐹 = 𝑅)
84, 7eqtrd 2656 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → dom 𝑟 = 𝑅)
9 simplrl 800 . . . . . . . . . . . . 13 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑚 = 𝑀)
109eqeq2d 2632 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((#‘𝑦) = 𝑚 ↔ (#‘𝑦) = 𝑀))
1110rabbidv 3189 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚} = {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑀})
12 vex 3203 . . . . . . . . . . . 12 𝑠 ∈ V
13 simpll1 1100 . . . . . . . . . . . 12 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ ℕ0)
14 ramval.c . . . . . . . . . . . . 13 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (#‘𝑏) = 𝑖})
1514hashbcval 15706 . . . . . . . . . . . 12 ((𝑠 ∈ V ∧ 𝑀 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑀})
1612, 13, 15sylancr 695 . . . . . . . . . . 11 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (𝑠𝐶𝑀) = {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑀})
1711, 16eqtr4d 2659 . . . . . . . . . 10 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚} = (𝑠𝐶𝑀))
188, 17oveq12d 6668 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚}) = (𝑅𝑚 (𝑠𝐶𝑀)))
1918raleqdv 3144 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))))
20 simpr 477 . . . . . . . . . . . . 13 ((𝑚 = 𝑀𝑟 = 𝐹) → 𝑟 = 𝐹)
2120dmeqd 5326 . . . . . . . . . . . 12 ((𝑚 = 𝑀𝑟 = 𝐹) → dom 𝑟 = dom 𝐹)
2263ad2ant3 1084 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → dom 𝐹 = 𝑅)
2321, 22sylan9eqr 2678 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → dom 𝑟 = 𝑅)
2423ad2antrr 762 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) → dom 𝑟 = 𝑅)
253ad2antrr 762 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑟 = 𝐹)
2625fveq1d 6193 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑟𝑐) = (𝐹𝑐))
2726breq1d 4663 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑟𝑐) ≤ (#‘𝑥) ↔ (𝐹𝑐) ≤ (#‘𝑥)))
289ad2antrr 762 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 = 𝑀)
2928oveq2d 6666 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = (𝑥𝐶𝑀))
30 vex 3203 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3113ad2antrr 762 . . . . . . . . . . . . . . . . 17 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑀 ∈ ℕ0)
3228, 31eqeltrd 2701 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑚 ∈ ℕ0)
3314hashbcval 15706 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ 𝑚 ∈ ℕ0) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚})
3430, 32, 33sylancr 695 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑚) = {𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚})
3529, 34eqtr3d 2658 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) = {𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚})
3635sseq1d 3632 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ((𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}) ↔ {𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐})))
37 rabss 3679 . . . . . . . . . . . . . 14 ({𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})))
38 elmapi 7879 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅)
3938ad3antlr 767 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)) → 𝑓:(𝑠𝐶𝑀)⟶𝑅)
40 ffn 6045 . . . . . . . . . . . . . . . . . . 19 (𝑓:(𝑠𝐶𝑀)⟶𝑅𝑓 Fn (𝑠𝐶𝑀))
41 fniniseg 6338 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fn (𝑠𝐶𝑀) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
4239, 40, 413syl 18 . . . . . . . . . . . . . . . . . 18 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
4335eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ 𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚}))
44 rabid 3116 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ {𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚} ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚))
4543, 44syl6bb 276 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑦 ∈ (𝑥𝐶𝑀) ↔ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)))
4645biimpar 502 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑥𝐶𝑀))
4712a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑠 ∈ V)
48 elpwi 4168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝑠𝑥𝑠)
4948adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → 𝑥𝑠)
5014hashbcss 15708 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ V ∧ 𝑥𝑠𝑀 ∈ ℕ0) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀))
5147, 49, 31, 50syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (𝑥𝐶𝑀) ⊆ (𝑠𝐶𝑀))
5251sselda 3603 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ (𝑥𝐶𝑀)) → 𝑦 ∈ (𝑠𝐶𝑀))
5346, 52syldan 487 . . . . . . . . . . . . . . . . . . 19 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)) → 𝑦 ∈ (𝑠𝐶𝑀))
5453biantrurd 529 . . . . . . . . . . . . . . . . . 18 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)) → ((𝑓𝑦) = 𝑐 ↔ (𝑦 ∈ (𝑠𝐶𝑀) ∧ (𝑓𝑦) = 𝑐)))
5542, 54bitr4d 271 . . . . . . . . . . . . . . . . 17 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ (𝑦 ∈ 𝒫 𝑥 ∧ (#‘𝑦) = 𝑚)) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑓𝑦) = 𝑐))
5655anassrs 680 . . . . . . . . . . . . . . . 16 ((((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) ∧ (#‘𝑦) = 𝑚) → (𝑦 ∈ (𝑓 “ {𝑐}) ↔ (𝑓𝑦) = 𝑐))
5756pm5.74da 723 . . . . . . . . . . . . . . 15 (((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) ∧ 𝑦 ∈ 𝒫 𝑥) → (((#‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})) ↔ ((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5857ralbidva 2985 . . . . . . . . . . . . . 14 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚𝑦 ∈ (𝑓 “ {𝑐})) ↔ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
5937, 58syl5bb 272 . . . . . . . . . . . . 13 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → ({𝑦 ∈ 𝒫 𝑥 ∣ (#‘𝑦) = 𝑚} ⊆ (𝑓 “ {𝑐}) ↔ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))
6036, 59bitr2d 269 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐) ↔ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))
6127, 60anbi12d 747 . . . . . . . . . . 11 ((((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) ∧ 𝑥 ∈ 𝒫 𝑠) → (((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6261rexbidva 3049 . . . . . . . . . 10 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) → (∃𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∃𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6324, 62rexeqbidv 3153 . . . . . . . . 9 (((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))) → (∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6463ralbidva 2985 . . . . . . . 8 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6519, 64bitrd 268 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)) ↔ ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐}))))
6665imbi2d 330 . . . . . 6 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))) ↔ (𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
6766albidv 1849 . . . . 5 ((((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) ∧ 𝑛 ∈ ℕ0) → (∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐))) ↔ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))))
6867rabbidva 3188 . . . 4 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))} = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))})
69 ramval.t . . . 4 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (𝑅𝑚 (𝑠𝐶𝑀))∃𝑐𝑅𝑥 ∈ 𝒫 𝑠((𝐹𝑐) ≤ (#‘𝑥) ∧ (𝑥𝐶𝑀) ⊆ (𝑓 “ {𝑐})))}
7068, 69syl6eqr 2674 . . 3 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))} = 𝑇)
7170infeq1d 8383 . 2 (((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) ∧ (𝑚 = 𝑀𝑟 = 𝐹)) → inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → ∀𝑓 ∈ (dom 𝑟𝑚 {𝑦 ∈ 𝒫 𝑠 ∣ (#‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (#‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((#‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ) = inf(𝑇, ℝ*, < ))
72 simp1 1061 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑀 ∈ ℕ0)
73 simp3 1063 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝐹:𝑅⟶ℕ0)
74 simp2 1062 . . 3 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝑅𝑉)
75 fex 6490 . . 3 ((𝐹:𝑅⟶ℕ0𝑅𝑉) → 𝐹 ∈ V)
7673, 74, 75syl2anc 693 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → 𝐹 ∈ V)
77 xrltso 11974 . . . 4 < Or ℝ*
7877infex 8399 . . 3 inf(𝑇, ℝ*, < ) ∈ V
7978a1i 11 . 2 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → inf(𝑇, ℝ*, < ) ∈ V)
802, 71, 72, 76, 79ovmpt2d 6788 1 ((𝑀 ∈ ℕ0𝑅𝑉𝐹:𝑅⟶ℕ0) → (𝑀 Ramsey 𝐹) = inf(𝑇, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158  {csn 4177   class class class wbr 4653  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  infcinf 8347  *cxr 10073   < clt 10074  cle 10075  0cn0 11292  #chash 13117   Ramsey cram 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-ram 15705
This theorem is referenced by:  ramcl2lem  15713
  Copyright terms: Public domain W3C validator