| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
| 2 | | pnfxr 10092 |
. . . 4
⊢ +∞
∈ ℝ* |
| 3 | | icossre 12254 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ +∞
∈ ℝ*) → (𝐵[,)+∞) ⊆
ℝ) |
| 4 | 1, 2, 3 | sylancl 694 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆
ℝ) |
| 5 | | ssrexv 3667 |
. . 3
⊢ ((𝐵[,)+∞) ⊆ ℝ
→ (∃𝑗 ∈
(𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 6 | 4, 5 | syl 17 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 7 | | simpr 477 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝑗 ∈
ℝ) |
| 8 | | simplr 792 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ∈
ℝ) |
| 9 | 7, 8 | ifcld 4131 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ ℝ) |
| 10 | | max1 12016 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ 𝑗, 𝑗, 𝐵)) |
| 11 | 10 | adantll 750 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ if(𝐵 ≤ 𝑗, 𝑗, 𝐵)) |
| 12 | | elicopnf 12269 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵 ≤ 𝑗, 𝑗, 𝐵)))) |
| 13 | 12 | ad2antlr 763 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
(if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ↔ (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ ℝ ∧ 𝐵 ≤ if(𝐵 ≤ 𝑗, 𝑗, 𝐵)))) |
| 14 | 9, 11, 13 | mpbir2and 957 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞)) |
| 15 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 16 | | simplr 792 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → 𝑗 ∈ ℝ) |
| 17 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆
ℝ) |
| 18 | 17 | sselda 3603 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
| 19 | | maxle 12022 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) →
(if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘))) |
| 20 | 15, 16, 18, 19 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 ↔ (𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘))) |
| 21 | | simpr 477 |
. . . . . . . 8
⊢ ((𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘) → 𝑗 ≤ 𝑘) |
| 22 | 20, 21 | syl6bi 243 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 → 𝑗 ≤ 𝑘)) |
| 23 | 22 | imim1d 82 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → ((𝑗 ≤ 𝑘 → 𝜑) → (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 → 𝜑))) |
| 24 | 23 | ralimdva 2962 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
(∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∀𝑘 ∈ 𝐴 (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 → 𝜑))) |
| 25 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑛 = if(𝐵 ≤ 𝑗, 𝑗, 𝐵) → (𝑛 ≤ 𝑘 ↔ if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘)) |
| 26 | 25 | imbi1d 331 |
. . . . . . 7
⊢ (𝑛 = if(𝐵 ≤ 𝑗, 𝑗, 𝐵) → ((𝑛 ≤ 𝑘 → 𝜑) ↔ (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 → 𝜑))) |
| 27 | 26 | ralbidv 2986 |
. . . . . 6
⊢ (𝑛 = if(𝐵 ≤ 𝑗, 𝑗, 𝐵) → (∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 → 𝜑))) |
| 28 | 27 | rspcev 3309 |
. . . . 5
⊢
((if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ∈ (𝐵[,)+∞) ∧ ∀𝑘 ∈ 𝐴 (if(𝐵 ≤ 𝑗, 𝑗, 𝐵) ≤ 𝑘 → 𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑)) |
| 29 | 14, 24, 28 | syl6an 568 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
(∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑))) |
| 30 | 29 | rexlimdva 3031 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑))) |
| 31 | | breq1 4656 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (𝑛 ≤ 𝑘 ↔ 𝑗 ≤ 𝑘)) |
| 32 | 31 | imbi1d 331 |
. . . . 5
⊢ (𝑛 = 𝑗 → ((𝑛 ≤ 𝑘 → 𝜑) ↔ (𝑗 ≤ 𝑘 → 𝜑))) |
| 33 | 32 | ralbidv 2986 |
. . . 4
⊢ (𝑛 = 𝑗 → (∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 34 | 33 | cbvrexv 3172 |
. . 3
⊢
(∃𝑛 ∈
(𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
| 35 | 30, 34 | syl6ib 241 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 36 | 6, 35 | impbid 202 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |