MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossre Structured version   Visualization version   GIF version

Theorem icossre 12254
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
icossre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)

Proof of Theorem icossre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elico2 12237 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
21biimp3a 1432 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
32simp1d 1073 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
433expia 1267 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3609 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wss 3574   class class class wbr 4653  (class class class)co 6650  cr 9935  *cxr 10073   < clt 10074  cle 10075  [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181
This theorem is referenced by:  icoshftf1o  12295  ico01fl0  12620  rexico  14093  rlim3  14229  fprodge1  14726  ovolicopnf  23292  dvfsumrlim2  23795  tanord1  24283  chebbnd1  25161  chebbnd2  25166  dchrisumlem3  25180  pntpbnd1  25275  pntibndlem2  25280  sxbrsigalem0  30333  dya2iocress  30336  dya2iocucvr  30346  sitmcl  30413  tan2h  33401  icoopn  39751  limciccioolb  39853  ltmod  39870  limcresioolb  39875  limsupresre  39928  limsupresico  39932  liminfresico  40003  fourierdlem32  40356  fourierdlem46  40369  fourierdlem48  40371  fourierdlem93  40416  fouriersw  40448  fouriercn  40449  hoissre  40758  hoissrrn2  40792  hoidmv1lelem2  40806  ovnlecvr2  40824  hspdifhsp  40830  hoiqssbllem2  40837  hspmbllem2  40841  iinhoiicclem  40887
  Copyright terms: Public domain W3C validator