MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexico Structured version   Visualization version   Unicode version

Theorem rexico 14093
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, k, A    B, j, k    ph, j
Allowed substitution hint:    ph( k)

Proof of Theorem rexico
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  B  e.  RR )
2 pnfxr 10092 . . . 4  |- +oo  e.  RR*
3 icossre 12254 . . . 4  |-  ( ( B  e.  RR  /\ +oo  e.  RR* )  ->  ( B [,) +oo )  C_  RR )
41, 2, 3sylancl 694 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( B [,) +oo )  C_  RR )
5 ssrexv 3667 . . 3  |-  ( ( B [,) +oo )  C_  RR  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
64, 5syl 17 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) ) )
7 simpr 477 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  j  e.  RR )
8 simplr 792 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  e.  RR )
97, 8ifcld 4131 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  if ( B  <_  j ,  j ,  B )  e.  RR )
10 max1 12016 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  B  <_  if ( B  <_  j ,  j ,  B ) )
1110adantll 750 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  <_  if ( B  <_  j ,  j ,  B ) )
12 elicopnf 12269 . . . . . . 7  |-  ( B  e.  RR  ->  ( if ( B  <_  j ,  j ,  B
)  e.  ( B [,) +oo )  <->  ( if ( B  <_  j ,  j ,  B )  e.  RR  /\  B  <_  if ( B  <_ 
j ,  j ,  B ) ) ) )
1312ad2antlr 763 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( if ( B  <_  j , 
j ,  B )  e.  ( B [,) +oo )  <->  ( if ( B  <_  j , 
j ,  B )  e.  RR  /\  B  <_  if ( B  <_ 
j ,  j ,  B ) ) ) )
149, 11, 13mpbir2and 957 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  if ( B  <_  j ,  j ,  B )  e.  ( B [,) +oo ) )
158adantr 481 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  B  e.  RR )
16 simplr 792 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  j  e.  RR )
17 simpll 790 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  A  C_  RR )
1817sselda 3603 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  k  e.  RR )
19 maxle 12022 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  ( if ( B  <_  j ,  j ,  B
)  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
2015, 16, 18, 19syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( if ( B  <_  j ,  j ,  B )  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
21 simpr 477 . . . . . . . 8  |-  ( ( B  <_  k  /\  j  <_  k )  -> 
j  <_  k )
2220, 21syl6bi 243 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  j  <_  k ) )
2322imim1d 82 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ph )  ->  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  ph )
) )
2423ralimdva 2962 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  A. k  e.  A  ( if ( B  <_ 
j ,  j ,  B )  <_  k  ->  ph ) ) )
25 breq1 4656 . . . . . . . 8  |-  ( n  =  if ( B  <_  j ,  j ,  B )  -> 
( n  <_  k  <->  if ( B  <_  j ,  j ,  B
)  <_  k )
)
2625imbi1d 331 . . . . . . 7  |-  ( n  =  if ( B  <_  j ,  j ,  B )  -> 
( ( n  <_ 
k  ->  ph )  <->  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  ph )
) )
2726ralbidv 2986 . . . . . 6  |-  ( n  =  if ( B  <_  j ,  j ,  B )  -> 
( A. k  e.  A  ( n  <_ 
k  ->  ph )  <->  A. k  e.  A  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  ph )
) )
2827rspcev 3309 . . . . 5  |-  ( ( if ( B  <_ 
j ,  j ,  B )  e.  ( B [,) +oo )  /\  A. k  e.  A  ( if ( B  <_ 
j ,  j ,  B )  <_  k  ->  ph ) )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) )
2914, 24, 28syl6an 568 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) ) )
3029rexlimdva 3031 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) ) )
31 breq1 4656 . . . . . 6  |-  ( n  =  j  ->  (
n  <_  k  <->  j  <_  k ) )
3231imbi1d 331 . . . . 5  |-  ( n  =  j  ->  (
( n  <_  k  ->  ph )  <->  ( j  <_  k  ->  ph ) ) )
3332ralbidv 2986 . . . 4  |-  ( n  =  j  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
3433cbvrexv 3172 . . 3  |-  ( E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph )  <->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) )
3530, 34syl6ib 241 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) ) )
366, 35impbid 202 1  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ifcif 4086   class class class wbr 4653  (class class class)co 6650   RRcr 9935   +oocpnf 10071   RR*cxr 10073    <_ cle 10075   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181
This theorem is referenced by:  rlimi2  14245  ello1mpt2  14253  dvfsumrlim  23794
  Copyright terms: Public domain W3C validator