MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim3 Structured version   Visualization version   GIF version

Theorem rlim3 14229
Description: Restrict the range of the domain bound to reals greater than some 𝐷 ∈ ℝ. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
rlim3.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlim3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦   𝑦,𝐷,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝐷(𝑥)

Proof of Theorem rlim3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim2.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 rlim2.3 . . . 4 (𝜑𝐶 ∈ ℂ)
41, 2, 3rlim2 14227 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
5 simpr 477 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rlim3.4 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
76adantr 481 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐷 ∈ ℝ)
85, 7ifcld 4131 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ)
9 max1 12016 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))
106, 9sylan 488 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))
11 elicopnf 12269 . . . . . . . 8 (𝐷 ∈ ℝ → (if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))))
127, 11syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))))
138, 10, 12mpbir2and 957 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞))
142, 6jca 554 . . . . . . 7 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ))
15 simpllr 799 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝐷 ∈ ℝ)
16 simplr 792 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑤 ∈ ℝ)
17 max2 12018 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷))
1815, 16, 17syl2anc 693 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷))
1916, 15ifcld 4131 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ)
20 simpll 790 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ)
2120sselda 3603 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
22 letr 10131 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷) ∧ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧) → 𝑤𝑧))
2316, 19, 21, 22syl3anc 1326 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷) ∧ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧) → 𝑤𝑧))
2418, 23mpand 711 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧𝑤𝑧))
2524imim1d 82 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2625ralimdva 2962 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2714, 26sylan 488 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
28 breq1 4656 . . . . . . . . 9 (𝑦 = if(𝐷𝑤, 𝑤, 𝐷) → (𝑦𝑧 ↔ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧))
2928imbi1d 331 . . . . . . . 8 (𝑦 = if(𝐷𝑤, 𝑤, 𝐷) → ((𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3029ralbidv 2986 . . . . . . 7 (𝑦 = if(𝐷𝑤, 𝑤, 𝐷) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3130rspcev 3309 . . . . . 6 ((if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ∧ ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
3213, 27, 31syl6an 568 . . . . 5 ((𝜑𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3332rexlimdva 3031 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3433ralimdv 2963 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
354, 34sylbid 230 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
36 pnfxr 10092 . . . . . 6 +∞ ∈ ℝ*
37 icossre 12254 . . . . . 6 ((𝐷 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐷[,)+∞) ⊆ ℝ)
386, 36, 37sylancl 694 . . . . 5 (𝜑 → (𝐷[,)+∞) ⊆ ℝ)
39 ssrexv 3667 . . . . 5 ((𝐷[,)+∞) ⊆ ℝ → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4038, 39syl 17 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4140ralimdv 2963 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
421, 2, 3rlim2 14227 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4341, 42sylibrd 249 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑧𝐴𝐵) ⇝𝑟 𝐶))
4435, 43impbid 202 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266  +crp 11832  [,)cico 12177  abscabs 13974  𝑟 crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-rlim 14220
This theorem is referenced by:  rlimresb  14296  rlimsqzlem  14379  rlimcnp  24692  signsply0  30628
  Copyright terms: Public domain W3C validator