Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutval Structured version   Visualization version   GIF version

Theorem scutval 31911
Description: The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutval (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem scutval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 31901 . . 3 (𝐴 <<s 𝐵𝐴 ∈ V)
2 ssltss1 31903 . . 3 (𝐴 <<s 𝐵𝐴 No )
31, 2elpwd 4167 . 2 (𝐴 <<s 𝐵𝐴 ∈ 𝒫 No )
4 df-br 4654 . . . 4 (𝐴 <<s 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ <<s )
54biimpi 206 . . 3 (𝐴 <<s 𝐵 → ⟨𝐴, 𝐵⟩ ∈ <<s )
6 ssltex2 31902 . . . 4 (𝐴 <<s 𝐵𝐵 ∈ V)
7 elimasng 5491 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
81, 6, 7syl2anc 693 . . 3 (𝐴 <<s 𝐵 → (𝐵 ∈ ( <<s “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ <<s ))
95, 8mpbird 247 . 2 (𝐴 <<s 𝐵𝐵 ∈ ( <<s “ {𝐴}))
10 riotaex 6615 . . 3 (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V
11 breq1 4656 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 <<s {𝑦} ↔ 𝐴 <<s {𝑦}))
12 breq2 4657 . . . . . . 7 (𝑏 = 𝐵 → ({𝑦} <<s 𝑏 ↔ {𝑦} <<s 𝐵))
1311, 12bi2anan9 917 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏) ↔ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)))
1413rabbidv 3189 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} = {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
1514imaeq2d 5466 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1615inteqd 4480 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
1716eqeq2d 2632 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}) ↔ ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
1814, 17riotaeqbidv 6614 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
19 sneq 4187 . . . . 5 (𝑎 = 𝐴 → {𝑎} = {𝐴})
2019imaeq2d 5466 . . . 4 (𝑎 = 𝐴 → ( <<s “ {𝑎}) = ( <<s “ {𝐴}))
21 df-scut 31899 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
2218, 20, 21ovmpt2x 6789 . . 3 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴}) ∧ (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})) ∈ V) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
2310, 22mp3an3 1413 . 2 ((𝐴 ∈ 𝒫 No 𝐵 ∈ ( <<s “ {𝐴})) → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
243, 9, 23syl2anc 693 1 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) = (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  𝒫 cpw 4158  {csn 4177  cop 4183   cint 4475   class class class wbr 4653  cima 5117  cfv 5888  crio 6610  (class class class)co 6650   No csur 31793   bday cbday 31795   <<s csslt 31896   |s cscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sslt 31897  df-scut 31899
This theorem is referenced by:  scutcut  31912  scutbday  31913  scutun12  31917  scutf  31919  scutbdaylt  31922
  Copyright terms: Public domain W3C validator