| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scutval | Structured version Visualization version Unicode version | ||
| Description: The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| scutval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssltex1 31901 |
. . 3
| |
| 2 | ssltss1 31903 |
. . 3
| |
| 3 | 1, 2 | elpwd 4167 |
. 2
|
| 4 | df-br 4654 |
. . . 4
| |
| 5 | 4 | biimpi 206 |
. . 3
|
| 6 | ssltex2 31902 |
. . . 4
| |
| 7 | elimasng 5491 |
. . . 4
| |
| 8 | 1, 6, 7 | syl2anc 693 |
. . 3
|
| 9 | 5, 8 | mpbird 247 |
. 2
|
| 10 | riotaex 6615 |
. . 3
| |
| 11 | breq1 4656 |
. . . . . . 7
| |
| 12 | breq2 4657 |
. . . . . . 7
| |
| 13 | 11, 12 | bi2anan9 917 |
. . . . . 6
|
| 14 | 13 | rabbidv 3189 |
. . . . 5
|
| 15 | 14 | imaeq2d 5466 |
. . . . . . 7
|
| 16 | 15 | inteqd 4480 |
. . . . . 6
|
| 17 | 16 | eqeq2d 2632 |
. . . . 5
|
| 18 | 14, 17 | riotaeqbidv 6614 |
. . . 4
|
| 19 | sneq 4187 |
. . . . 5
| |
| 20 | 19 | imaeq2d 5466 |
. . . 4
|
| 21 | df-scut 31899 |
. . . 4
| |
| 22 | 18, 20, 21 | ovmpt2x 6789 |
. . 3
|
| 23 | 10, 22 | mp3an3 1413 |
. 2
|
| 24 | 3, 9, 23 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-sslt 31897 df-scut 31899 |
| This theorem is referenced by: scutcut 31912 scutbday 31913 scutun12 31917 scutf 31919 scutbdaylt 31922 |
| Copyright terms: Public domain | W3C validator |