Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutval Structured version   Visualization version   Unicode version

Theorem scutval 31911
Description: The value of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
scutval  |-  ( A < <s B  ->  ( A |s B )  =  ( iota_ x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem scutval
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssltex1 31901 . . 3  |-  ( A < <s B  ->  A  e.  _V )
2 ssltss1 31903 . . 3  |-  ( A < <s B  ->  A  C_  No )
31, 2elpwd 4167 . 2  |-  ( A < <s B  ->  A  e.  ~P No )
4 df-br 4654 . . . 4  |-  ( A < <s B  <->  <. A ,  B >.  e. 
< <s )
54biimpi 206 . . 3  |-  ( A < <s B  ->  <. A ,  B >.  e.  < <s
)
6 ssltex2 31902 . . . 4  |-  ( A < <s B  ->  B  e.  _V )
7 elimasng 5491 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B  e.  ( < <s " { A } )  <->  <. A ,  B >.  e.  < <s ) )
81, 6, 7syl2anc 693 . . 3  |-  ( A < <s B  ->  ( B  e.  ( < <s " { A } )  <->  <. A ,  B >.  e. 
< <s ) )
95, 8mpbird 247 . 2  |-  ( A < <s B  ->  B  e.  ( < <s " { A } ) )
10 riotaex 6615 . . 3  |-  ( iota_ x  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )  e.  _V
11 breq1 4656 . . . . . . 7  |-  ( a  =  A  ->  (
a < <s { y }  <->  A < <s { y } ) )
12 breq2 4657 . . . . . . 7  |-  ( b  =  B  ->  ( { y } < <s b  <->  { y } < <s B ) )
1311, 12bi2anan9 917 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( a <
<s { y }  /\  { y } < <s
b )  <->  ( A < <s { y }  /\  { y } < <s
B ) ) )
1413rabbidv 3189 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  { y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  =  { y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) } )
1514imaeq2d 5466 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } )  =  ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )
1615inteqd 4480 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  |^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } )  =  |^| ( bday " { y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) } ) )
1716eqeq2d 2632 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( bday `  x
)  =  |^| ( bday " { y  e.  No  |  ( a < <s {
y }  /\  {
y } < <s b ) } )  <-> 
( bday `  x )  =  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
1814, 17riotaeqbidv 6614 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  ( iota_ x  e.  {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) )  =  ( iota_ x  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
19 sneq 4187 . . . . 5  |-  ( a  =  A  ->  { a }  =  { A } )
2019imaeq2d 5466 . . . 4  |-  ( a  =  A  ->  (
< <s " {
a } )  =  ( < <s " { A } ) )
21 df-scut 31899 . . . 4  |-  |s  =  ( a  e. 
~P No ,  b  e.  ( < <s " { a } )  |->  ( iota_ x  e. 
{ y  e.  No  |  ( a <
<s { y }  /\  { y } < <s
b ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( a < <s { y }  /\  { y } < <s b ) } ) ) )
2218, 20, 21ovmpt2x 6789 . . 3  |-  ( ( A  e.  ~P No  /\  B  e.  ( <
<s " { A } )  /\  ( iota_ x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )  e.  _V )  ->  ( A |s B )  =  (
iota_ x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
2310, 22mp3an3 1413 . 2  |-  ( ( A  e.  ~P No  /\  B  e.  ( <
<s " { A } ) )  -> 
( A |s B )  =  (
iota_ x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
243, 9, 23syl2anc 693 1  |-  ( A < <s B  ->  ( A |s B )  =  ( iota_ x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   ~Pcpw 4158   {csn 4177   <.cop 4183   |^|cint 4475   class class class wbr 4653   "cima 5117   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Nocsur 31793   bdaycbday 31795   <
<scsslt 31896   |scscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sslt 31897  df-scut 31899
This theorem is referenced by:  scutcut  31912  scutbday  31913  scutun12  31917  scutf  31919  scutbdaylt  31922
  Copyright terms: Public domain W3C validator