Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgval Structured version   Visualization version   GIF version

Theorem sitgval 30394
Description: Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitgval (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑔,𝑥   𝑓,𝐻   𝑓,𝑀,𝑔,𝑥   𝑆,𝑓,𝑔   𝑓,𝑊,𝑔,𝑥   0 ,𝑓,𝑔,𝑥   · ,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝐵(𝑥,𝑔)   𝑆(𝑥)   · (𝑥,𝑔)   𝐻(𝑥,𝑔)   𝐽(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem sitgval
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.1 . . 3 (𝜑𝑊𝑉)
21elexd 3214 . 2 (𝜑𝑊 ∈ V)
3 sitgval.2 . 2 (𝜑𝑀 ran measures)
4 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
54fveq2d 6195 . . . . . . 7 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = (sigaGen‘(TopOpen‘𝑊)))
6 sitgval.s . . . . . . . 8 𝑆 = (sigaGen‘𝐽)
7 sitgval.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
87fveq2i 6194 . . . . . . . 8 (sigaGen‘𝐽) = (sigaGen‘(TopOpen‘𝑊))
96, 8eqtri 2644 . . . . . . 7 𝑆 = (sigaGen‘(TopOpen‘𝑊))
105, 9syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆)
1110oveq2d 6666 . . . . 5 (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆))
12 fveq2 6191 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
13 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
1412, 13syl6eqr 2674 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1514sneqd 4189 . . . . . . . 8 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1615difeq2d 3728 . . . . . . 7 (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g𝑤)}) = (ran 𝑔 ∖ { 0 }))
1716raleqdv 3144 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
1817anbi2d 740 . . . . 5 (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
1911, 18rabeqbidv 3195 . . . 4 (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
20 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
2115difeq2d 3728 . . . . . 6 (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g𝑤)}) = (ran 𝑓 ∖ { 0 }))
22 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
23 sitgval.x . . . . . . . 8 · = ( ·𝑠𝑊)
2422, 23syl6eqr 2674 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
25 fveq2 6191 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
2625fveq2d 6195 . . . . . . . . 9 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊)))
27 sitgval.h . . . . . . . . 9 𝐻 = (ℝHom‘(Scalar‘𝑊))
2826, 27syl6eqr 2674 . . . . . . . 8 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = 𝐻)
2928fveq1d 6193 . . . . . . 7 (𝑤 = 𝑊 → ((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(𝑓 “ {𝑥}))))
30 eqidd 2623 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
3124, 29, 30oveq123d 6671 . . . . . 6 (𝑤 = 𝑊 → (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥) = ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))
3221, 31mpteq12dv 4733 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))
3320, 32oveq12d 6668 . . . 4 (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))))
3419, 33mpteq12dv 4733 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))))
35 dmeq 5324 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
3635oveq1d 6665 . . . . 5 (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆))
37 fveq1 6190 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚‘(𝑔 “ {𝑥})) = (𝑀‘(𝑔 “ {𝑥})))
3837eleq1d 2686 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3938ralbidv 2986 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
4039anbi2d 740 . . . . 5 (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
4136, 40rabeqbidv 3195 . . . 4 (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
42 simpl 473 . . . . . . . . 9 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀)
4342fveq1d 6193 . . . . . . . 8 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(𝑓 “ {𝑥})) = (𝑀‘(𝑓 “ {𝑥})))
4443fveq2d 6195 . . . . . . 7 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝑓 “ {𝑥}))))
4544oveq1d 6665 . . . . . 6 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))
4645mpteq2dva 4744 . . . . 5 (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))
4746oveq2d 6666 . . . 4 (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
4841, 47mpteq12dv 4733 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
49 df-sitg 30392 . . 3 sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
50 ovex 6678 . . . 4 (dom 𝑀MblFnM𝑆) ∈ V
5150mptrabex 6488 . . 3 (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))) ∈ V
5234, 48, 49, 51ovmpt2 6796 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
532, 3, 52syl2anc 693 1 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  {csn 4177   cuni 4436  cmpt 4729  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  +∞cpnf 10071  [,)cico 12177  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  TopOpenctopn 16082  0gc0g 16100   Σg cgsu 16101  ℝHomcrrh 30037  sigaGencsigagen 30201  measurescmeas 30258  MblFnMcmbfm 30312  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-sitg 30392
This theorem is referenced by:  issibf  30395  sitgfval  30403  sitgf  30409
  Copyright terms: Public domain W3C validator